| [1] |
Ramsden W. Separation of solids in the surface-layers of solutions and ‘suspensions’ (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation). —Preliminary account[J]. Proceedings of the Royal Society of London, 1903, 72: 156-164.
doi: 10.1098/rspl.1903.0034
|
| [2] |
Pickering S U. CXCVI. —Emulsions[J]. Journal of the Chemical Society, 1907, 91: 2001-2021.
doi: 10.1039/CT9079102001
|
| [3] |
Kralchevsky P A, Nagayama K. Capillary forces between colloidal particles[J]. Langmuir, 1994, 10 (1) : 23-36.
doi: 10.1021/la00013a004
|
| [4] |
Ma H, Dai L L. Particle self-assembly in ionic liquid-in-water Pickering emulsions[J]. Langmuir, 2011, 27 (2) : 508-512.
doi: 10.1021/la103828x
pmid: 21166452
|
| [5] |
Midmore B R. Preparation of a novel silica-stabilized oil/water emulsion[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 132 (2) : 257-265.
doi: 10.1016/S0927-7757(97)00094-0
|
| [6] |
Xu Jingting, He Mingxiang, Wei Cuiping, et al. Konjac glucomannan films with Pickering emulsion stabilized by TEMPO-oxidized chitin nanocrystal for active food packaging[J]. Food Hydrocolloids, 2023, 139: 108539.
doi: 10.1016/j.foodhyd.2023.108539
|
| [7] |
Lu Hao, Tian Yaoqi. Nanostarch: preparation, modification, and application in Pickering emulsions[J]. Journal of Agricultural and Food Chemistry, 2021, 69 (25) : 6929-6942.
doi: 10.1021/acs.jafc.1c01244
pmid: 34142546
|
| [8] |
Zia A, Pentzer E, Thickett S, et al. Advances and opportunities of oil-in-oil emulsions[J]. ACS Applied Materials & Interfaces, 2020, 12 (35) : 38845-38861.
|
| [9] |
Fan Zhaoyu, Tay A, Pera-Titus M, et al. Pickering interfacial catalysts for solvent-free biomass transformation: physicochemical behavior of non-aqueous emulsions[J]. Journal of Colloid and Interface Science, 2014, 427: 80-90.
doi: 10.1016/j.jcis.2013.11.047
pmid: 24360842
|
| [10] |
Binks B P, Rodrigues J A, Frith W J. Synergistic interaction in emulsions stabilized by a mixture of silica nanoparticles and cationic surfactant[J]. Langmuir, 2007, 23 (7) : 3626-3636.
pmid: 17316038
|
| [11] |
Zhu Ya, Huan Siqi, Bai Long, et al. High internal phase oil-in-water Pickering emulsions stabilized by chitin nanofibrils: 3D structuring and solid foam[J]. Acs Applied Materials & Interfaces, 2020, 12 (9) : 11240-11251.
|
| [12] |
Guo Ziang, Li Zhihua, Cen Shaoyi, et al. Modulating hydrophilic properties of β-cyclodextrin/carboxymethyl cellulose colloid particles to stabilize Pickering emulsions for food 3D printing[J]. Carbohydrate Polymers, 2023, 313: 120764.
doi: 10.1016/j.carbpol.2023.120764
|
| [13] |
Liu Haifang, Huang Riting, Zhao Xinyu, et al. Ca2+/pH-triggered gelation of Pickering emulsion in vitro digestion: visualization and sustained-release performance[J]. Food Hydrocolloids, 2023, 140: 108583.
doi: 10.1016/j.foodhyd.2023.108583
|
| [14] |
Ruiz M P, Faria J A. Catalysis at the solid-liquid-liquid interface of water-oil Pickering emulsions: a tutorial review[J]. ACS Engineering Au, 2022, 2 (4) : 295-319.
doi: 10.1021/acsengineeringau.2c00010
|
| [15] |
Hu Jing, Du Peiting, Xu Ruoyi, et al. Supersmall dendritic mesoporous silica nanospheres as antioxidant nanocarriers for Pickering emulsifiers[J]. Journal of Agricultural and Food Chemistry, 2021, 69 (49) : 14893-14905.
doi: 10.1021/acs.jafc.1c03016
|
| [16] |
Cao Huaixuan, Wang Yifei, Tan Zeyi, et al. Structured Ti3C2Tz MXene-polymer composites from non-aqueous emulsions[J]. Matter, 2024, 7 (5) : 1766-1784.
doi: 10.1016/j.matt.2024.02.011
|
| [17] |
Chatterjee R, Bararnia H, Anand S. A family of frost-resistant and icephobic coatings[J]. Advanced Materials, 2022, 34: 2109930.
doi: 10.1002/adma.v34.20
|
| [18] |
Ceballos M R, Brailovsky V, Bierbrauer K L, et al. Effect of ethylcellulose on the structure and stability of non-aqueous oil based propylene glycol emulsions[J]. Food Research International, 2014, 62: 416-423.
doi: 10.1016/j.foodres.2014.03.040
|
| [19] |
Cameron N R, Sherrington D C. Non-aqueous high internal phase emulsions. Preparation and stability[J]. Journal of the Chemical Society, Faraday Transactions, 1996, 92 (9) : 1543-1547.
doi: 10.1039/ft9969201543
|
| [20] |
Wang Beibei, Zhang Zhao, Feng Weixiao, et al. Stabilizing and structuring oil-oil interfaces by molecular brush surfactants[J]. Aggregate, 2022, 3: e292.
|
| [21] |
Gritten Sieben P, Savicki A, Wypych F, et al. Oil-in-oil Pickering emulsions stabilized with kaolinite[J]. Journal of Molecular Liquids, 2023, 385: 122343.
doi: 10.1016/j.molliq.2023.122343
|
| [22] |
Ren Gaihuan, Li Bo, Ren Lulu, et al. Dynamic covalent nanoparticles for acid-responsive nonaqueous Pickering emulsions[J]. Langmuir, 2021, 37 (22) : 6632-6640.
doi: 10.1021/acs.langmuir.1c00097
|
| [23] |
Bielas R, Józefczak A. The effect of particle shell on cooling rates in oil-in-oil magnetic Pickering emulsions[J]. Materials, 2020, 13: 4783.
doi: 10.3390/ma13214783
|
| [24] |
Asano I, So S, Lodge T P. Oil-in-oil emulsions stabilized by asymmetric polymersomes formed by AC+BC block polymer co-assembly[J]. Journal of the American Chemical Society, 2016, 138 (14) : 4714-4717.
doi: 10.1021/jacs.6b01697
|
| [25] |
Rodier B, de Leon A, Hemmingsen C, et al. Controlling oil-in-oil Pickering-type emulsions using 2D materials as surfactant[J]. ACS Macro Letters, 2017, 6 (11) : 1201-1206.
doi: 10.1021/acsmacrolett.7b00648
pmid: 35650795
|
| [26] |
Xue Linyu, Li Hongye, Pei Xiaomei, et al. Pickering emulsions synergistically stabilized by aliphatic primary amines and silica nanoparticles[J]. Langmuir, 2022, 38 (46) : 14109-14117.
doi: 10.1021/acs.langmuir.2c02072
pmid: 36349864
|
| [27] |
Tawfeek A M, Dyab A K F, Al-Lohedan H A. Synergetic effect of reactive surfactants and clay particles on stabilization of nonaqueous oil-in-oil (O/O) emulsions[J]. Journal of Dispersion Science and Technology, 2014, 35 (2) : 265-272.
doi: 10.1080/01932691.2013.769110
|
| [28] |
Binks B P, Tyowua A T. Oil-in-oil emulsions stabilised solely by solid particles[J]. Soft Matter, 2016, 12 (3) : 876-887.
doi: 10.1039/c5sm02438b
pmid: 26549699
|