| [1] |
Li G, Cheng B L, Zhang H B, et al. Progress in UV photodetectors based on ZnO nanomaterials: A review of the detection mechanisms and their improvement[J]. Nanomaterials (Basel), 2025, 15 (644) : 1-16.
doi: 10.3390/nano15010001
|
| [2] |
张家彬, 邵伟平, 赵国阳, 等. 纳米ZnO的制备及应用研究[J]. 光学与光电技术, 2025, 23 (3) : 125-127.
|
| [3] |
Baek N, Kim Y T, Marcy J E, et al. Physical properties of nanocomposite polylactic acid films prepared with oleic acid modified titanium dioxide[J]. Food Packaging and Shelf Life, 2018, 17: 30-38.
doi: 10.1016/j.fpsl.2018.05.004
|
| [4] |
Huong N T, Son N N, Thanh V M, et al. Glutamic acid-coated zinc oxide nanoparticles: synthesis, characterization, and anticancer activity[J]. Journal of Nanoparticle Research, 2025, 27 (15) : 1-16.
doi: 10.1007/s11051-024-06200-2
|
| [5] |
孙晓敏, 左士祥, 余瑶瑶, 等. 基于片状ZnO的功效性紫外屏蔽材料的制备及性能研究[J]. 日用化学工业(中英文), 2025, 55 (1) : 55-62.
|
| [6] |
杨卓, 李春雷, 张鑫, 等. 纳米氧化锌液相法制备技术进展[J]. 无机盐工业, 2024, 56 (3) : 1-11.
|
| [7] |
Kwon D, Park J, Park J, et al. Effects of surface-modifying ligands on the colloidal stability of ZnO nanoparticle dispersions in in vitro cytotoxicity test media[J]. Int. J. Nanomedicine, 2014, 9 (Suppl 2): 57-65.
|
| [8] |
Khurana N, Arora P, Pente A S, et al. Surface modification of zinc oxide nanoparticles by vinyltriethoxy silane (VTES)[J]. Inorganic Chemistry Communications, 2021, 124: 1-8.
|
| [9] |
王玲玲, 陈淼, 张志新, 等. 改性纳米氧化锌的制备及在环氧树脂中的应用[J]. 中国胶粘剂, 2025, 34 (1) : 65-70.
|
| [10] |
Xue M S, Xu T, Xie X L, et al. Formation, transformation and superhydrophobicity of compound surfactant-assisted aligned ZnO nanoplatelets[J]. Applied Surface Science, 2015, 355: 1063-1068.
doi: 10.1016/j.apsusc.2015.07.202
|
| [11] |
刘建平, 李加兴, 吴志康, 等. 月桂酸改性氧化锌纳米颗粒的Pickering乳化性能研究[J]. 日用化学工业, 2020, 50 (8) : 542-546.
|
| [12] |
卢国强, 穆蒙, 李洋, 等. 甜菜碱型表面活性剂的研究进展[J]. 中国洗涤用品工业, 2024 (1) : 30-45.
|
| [13] |
刘红, 李国威, 魏少华. 磷酸酯甜菜碱表面活性剂的研究[J]. 科技进展, 1998, 12: 19-21.
|
| [14] |
李文志, 刘慧, 马文萱, 等. 温度调控下纳米ZnO光催化剂的性能及机理研究[J]. 化工新型材料, 2025, 53 (Suppl.1): 285-289.
|
| [15] |
Srihari S, Sathyanath R, Kalpathy S K, et al. Effect of nanoscale surface modification on the interfacial mechanics of carbon fibers[J]. Advanced Materials Interfaces, 2024, 11 : 1-13.
|
| [16] |
Herrera-Rivera R, Olvera M D L L, Maldonado A. Synthesis of ZnO nanopowders by the homogeneous precipitation method: Use of taguchi’s method for analyzing the effect of different variables[J]. Journal of Nanomaterials, 2017: 1-9.
|
| [17] |
刘丹, 邱华. 硅烷偶联剂IPTS改性纳米ZnO的制备及性能研究[J]. 化工新型材料, 2023, 51 (7) : 271-275.
doi: 10.19817/j.cnki.issn1006-3536.2023.07.049
|
| [18] |
刘佳佳, 许虎君. 脂肪酰胺丙基磷酸酯甜菜碱的合成和性能研究[J]. 日用化学工业, 2020, 52 (7) : 446-451.
|
| [19] |
苗向阳, 刘可, 柯惟中, 等. 两种不同形貌的ZnO纳米粒子的制备和光学性质研究[J]. 南京师大学报, 2007, 30 (4) : 66-70.
|
| [20] |
Ji P, Wang C S, Jiang Z L, et al. Influence of surface modification of zinc oxide nanoparticles on thermal behavior and hydrophilic property of PET-PEG composites[J]. Polymer Composites, 2015, 37 (6) : 1830-1838.
doi: 10.1002/pc.v37.6
|
| [21] |
Du H C, Yuan F L, Huang S L, et al. A new reaction to ZnO nanoparticles[J]. Chemistry Letters, 2004, 33 (6) : 770-771.
doi: 10.1246/cl.2004.770
|
| [22] |
Wood A, Giersig M, Hilgendorff M, et al. Size effects in ZnO: The cluster to quantum dot transition[J]. Aust. J. Chem., 2003, 56: 1051-1057.
doi: 10.1071/CH03120
|
| [23] |
Lamer B V, Dinegar R. Theory, production and mechanism of formation of monodispersed hydrosols[J]. Journal of the American Chemical Society, 1950, 72: 4847-4854.
doi: 10.1021/ja01167a001
|
| [24] |
Chen J B, Ma Y Y, Lin H P, et al. Fabrication of hydrophobic ZnO/PMHS coatings on bamboo surfaces: The synergistic effect of ZnO and PMHS on anti-mildew properties[J]. Coatings, 2018, 9 (1) : 1-10.
doi: 10.3390/coatings9010001
|
| [25] |
杨华, 夏润蒲, 卢秀萍, 等. 纳米氧化锌的改性及其对生物高分子P(3HB-co-4HB)的增韧增强作用[J]. 功能材料, 2015, 2 (46).
|
| [26] |
张潇轩. 纳米ZnO的表面改性及其在抗菌涂料中的应用[D]. 西安: 西安理工大学, 2023.
|
| [27] |
张婉萍, 关馨, 郑时莲, 等. PMTMS/TiO2复合材料的制备及其性能表征[J]. 日用化学工业(中英文), 2025, 54 (10) : 1227-1234.
|
| [28] |
Zhou X Q, Hayat Z, Zhang D D, et al. Zinc oxide nanoparticles: Synthesis, characterization, modification, and applications in food and agriculture[J]. Processes, 2023, 11 (4) : 1-23.
doi: 10.3390/pr11010001
|
| [29] |
Sheng Y, Zhou B, Zhao J Z, et al. Influence of octadecyl dihydrogen phosphate on the formation of active super-fine calcium carbonate[J]. J. Colloid Interface Sci., 2004, 272 (2) : 326-329.
doi: 10.1016/j.jcis.2003.11.062
|