日用化学工业(中英文) ›› 2025, Vol. 55 ›› Issue (10): 1221-1235.doi: 10.3969/j.issn.2097-2806.2025.10.001
• 特邀专稿 • 下一篇
收稿日期:2025-10-06
出版日期:2025-10-22
发布日期:2025-12-03
通讯作者:
吴立新
基金资助:Received:2025-10-06
Online:2025-10-22
Published:2025-12-03
Contact:
Lixin Wu
摘要:
金属有机框架(MOFs)是一类多功能孔结构材料,具有灵活的结构配置、可调节的孔径以及定制化的表面化学微环境,为其在多个领域的应用奠定了基础。在日用化学品领域,MOFs由于其较高的稳定性和负载能力、低的生物毒性、优良的发光性能和强的催化能力等特点,展示出强大的应用潜力,在多种场景得到广泛应用。通过对化学组成、结构和性质阐述,MOFs材料展示出其与日用化学品领域应用的极好契合性。对MOFs在化妆品中有机物和金属离子检测、紫外防护、挥发性有机分子的负载和可控释放以及具有皮肤治疗功能的控释等研究结果进行总结,系统地展现了MOFs在化妆品中应用的研究进展。对已有相关应用与MOFs结构之间的关系进行讨论,指出了孔结构材料的重要价值。在总结现有工作的基础上,对MOFs在化妆品领域的进一步发展进行了展望,提出了包括现有应用研究的深入探索、在更多化妆品领域的应用拓展、多功能集成的MOFs应用、基于MOFs复合材料的开发以及从实验室研究到工业生产的放大合成等观点。
中图分类号:
李豹,赵鑫宇,吴立新. 金属有机框架材料在化妆品中的应用[J]. 日用化学工业(中英文), 2025, 55(10): 1221-1235.
Bao Li,Xinyu Zhao,Lixin Wu. Applications of metal-organic framework materials in cosmetics[J]. China Surfactant Detergent & Cosmetics, 2025, 55(10): 1221-1235.
| [1] |
Yaghi O M, Li H. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels[J]. Journal of the American Chemical Society, 2002, 117: 10401-10402.
doi: 10.1021/ja00146a033 |
| [2] |
Furukawa H, Cordova K E, O’Keeffe M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341: 1230444.
doi: 10.1126/science.1230444 |
| [3] |
Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites[J]. Chemical Reviews, 2012, 112: 933-969.
doi: 10.1021/cr200304e pmid: 22098087 |
| [4] |
Allendorf M D, Bauer C A, Bhakta R K, et al. Luminescent metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38: 1330-1352.
doi: 10.1039/b802352m pmid: 19384441 |
| [5] |
Zhang Y, Liu Y, Wang D, et al. State-of-the-art advances on syntheses, structures and applications of polyoxometalate-based metal-organic frameworks[J]. Polyoxometalates, 2023, 2: 9140017.
doi: 10.26599/POM.2022.9140017 |
| [6] |
Li B, Wu L X. Perspective of polyoxometalate complexes on flexible assembly and integrated potentials[J]. Polyoxometalates, 2023, 2: 9140016.
doi: 10.26599/POM.2022.9140016 |
| [7] |
Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38: 1477-1504.
doi: 10.1039/b802426j |
| [8] | Xu Y, Li S, Liu L, et al. Enhanced electrocatalytic oxidation of sterols using the synergistic effect of NiFe-MOF and aminoxyl radicals[J]. Acta Physico-Chimica Sinica, 2024, 40: 230512. |
| [9] |
Liu J, Chen L, Cui H, et al. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis[J]. Chemical Society Reviews, 2014, 43: 6011-6061.
doi: 10.1039/c4cs00094c pmid: 24871268 |
| [10] |
Hu Z, Deibert B J, Li J. Luminescent metal-organic frameworks for chemical sensing and explosive detection[J]. Chemical Society Reviews, 2014, 43: 5815-5840.
doi: 10.1039/c4cs00010b pmid: 24577142 |
| [11] | Yu H M, Li S H, Tian H W, et al. Enhancement of solubility, stability and permeation of skin-care ingredients by amphiphilic sulfonated calix[8]arene[J]. Chemical Journal of Chinese Universities, 2023, 44: 20230143. |
| [12] |
Rowsell J L C, Yaghi O M. Metal-organic frameworks: A new class of porous materials[J]. Microporous and Mesoporous Materials, 2004, 73: 3-14.
doi: 10.1016/j.micromeso.2004.03.034 |
| [13] |
Wang Z, Cohen S M. Postsynthetic modification of metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38: 1315-1329.
doi: 10.1039/b802258p pmid: 19384440 |
| [14] |
Howarth A J, Liu Y, Li P, et al. Chemical, thermal and mechanical stabilities of metal-organic frameworks[J]. Nature Reviews Materials, 2016, 1: 15018.
doi: 10.1038/natrevmats.2015.18 |
| [15] |
Ding M, Cai X, Jiang H L. Improving MOF stability: Approaches and applications[J]. Chemical Science, 2019, 10: 10209-10230.
doi: 10.1039/c9sc03916c pmid: 32206247 |
| [16] |
Yuan S, Feng L, Wang K, et al. Stable metal-organic frameworks: Design, synthesis, and applications[J]. Advanced Materials, 2018, 30: 1704303.
doi: 10.1002/adma.v30.37 |
| [17] |
Jayaramulu K, Geyer F, Schneemann A, et al. Hydrophobic metal-organic frameworks[J]. Advanced Materials, 2019, 31: 1900820.
doi: 10.1002/adma.v31.32 |
| [18] |
Zhang Y, Yuan S, Day G, et al. Luminescent sensors based on metal-organic frameworks[J]. Coordination Chemistry Reviews, 2018, 354: 28-45.
doi: 10.1016/j.ccr.2017.06.007 |
| [19] |
Hao T, Xu B, Wang X, et al. Circularly polarized luminescence enhancement in rare-earth MOFs due to framework chirality and host-guest energy transfer[J]. Polyoxometalates, 2025, 4: 9140095.
doi: 10.26599/POM.2025.9140095 |
| [20] |
Hong D Y, Hwang Y K, Serre C, et al. Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: Surface fnctionalization, encapsulation, sorption and catalysis[J]. Advanced Functional Materials, 2009, 19: 1537-1552.
doi: 10.1002/adfm.v19:10 |
| [21] |
Shao B, Dong H, Gong Y, et al. Metal-organic framework-derived nickel nanoparticles for efficient CO2 electroreduction in wide potential windows[J]. Acta Physico-Chimica Sinica, 2024, 40: 2305026.
doi: 10.3866/PKU.WHXB202305026 |
| [22] |
Farrusseng D, Aguado S, Pinel C. Metal-organic frameworks: Opportunities for catalysis[J]. Angewandte Chemie International Edition, 2009, 48: 7502-7513.
doi: 10.1002/anie.v48:41 |
| [23] |
Azhar M R, Vijay P, Tadé M O, et al. Submicron sized water-stable metal organic framework (bio-MOF-11) for catalytic degradation of pharmaceuticals and personal care products[J]. Chemosphere, 2018, 196: 105-114.
doi: S0045-6535(17)32142-2 pmid: 29294423 |
| [24] | Zhang K, Liu X, Deng M, et al. Determination of nine nitrobenzene compounds in cosmetics by ultra performance liquid chromatography quadrupole-time-of-flight mass spectrometry[J]. China Surfactanct Detergent & Cosmetics, 2024, 54 (6) : 744-750. |
| [25] |
Samadifar M, Yamini Y, Khataei M M, et al. Automated and semi-automated packed sorbent solid phase (micro) extraction methods for extraction of organic and inorganic pollutants[J]. Journal of Chromatography A, 2023, 1706: 464227.
doi: 10.1016/j.chroma.2023.464227 |
| [26] |
Zhai Y, Li N, Lei L, et al. Dispersive micro-solid-phase extraction of hormones in liquid cosmetics with metal-organic framework[J]. Analytical Methods, 2014, 6: 9435-9445.
doi: 10.1039/C4AY01763C |
| [27] |
Rocío-Bautista P, Martínez-Benito C, Pino V, et al. The metal-organic framework HKUST-1 as efficient sorbent in a vortex-assisted dispersive micro solid-phase extraction of parabens from environmental waters, cosmetic creams, and human urine[J]. Talanta, 2015, 139: 13-20.
doi: 10.1016/j.talanta.2015.02.032 pmid: 25882402 |
| [28] |
Napolitano-Tabares P I, Gutiérrez-Serpa A, Jiménez-Abizanda A I, et al. Hybrid materials formed with green metal-organic frameworks and polystyrene as sorbents in dispersive micro-solid-phase extraction for determining personal care products in micellar cosmetics[J]. Molecules, 2022, 27: 813.
doi: 10.3390/molecules27030813 |
| [29] |
Miralles P, van Gemert I, Chisvert A, et al. Stir bar sorptive-dispersive microextraction mediated by magnetic nanoparticles-metal organic framework composite: Determination of N-nitrosamines in cosmetic products[J]. Journal of Chromatography A, 2019, 1604: 460465.
doi: 10.1016/j.chroma.2019.460465 |
| [30] | Ma P, Li J, Gao D, et al. MOFs-functionalized melamine sponge columns combined with highperformance liquid chromatography for determination of parabens in cosmetics[J]. China Surfactanct Detergent & Cosmetics, 2025, 55 (5) : 548-553. |
| [31] |
Cheng H, Yi F, Sun J, et al. A naphthalimide-based fluorescent probe with a benzoylthiourea trigger for detection of Hg(Ⅱ) in cosmetics[J]. Dyes and Pigments, 2024, 226: 112135.
doi: 10.1016/j.dyepig.2024.112135 |
| [32] | Zadehahmadi F, Eden N T, Mahdavi H, et al. Removal of metals from water using MOF-based composite adsorbents[J]. Environmental Science: Water Research & Technology, 2023, 9: 1305-1330. |
| [33] | Radwan A, El-Sewify I M, Shahat A, et al. Multiuse Al-MOF chemosensors for visual detection and removal of mercury ions in water and skin-whitening cosmetics[J]. ACS Sustainable Chemistry & Engineering, 2020, 8: 15097-15107. |
| [34] |
Kamel R M, Shahat A, Anwar Z M, et al. A novel sensitive and selective chemosensor for fluorescent detection of Zn2+ in cosmetics creams based on a covalent post functionalized Al-MOF[J]. New Journal of Chemistry, 2021, 45: 8054-8063.
doi: 10.1039/D1NJ00871D |
| [35] |
Lee J W, Trinh C T. Towards renewable flavors, fragrances, and beyond[J]. Current Opinion in Biotechnology, 2020, 61: 168-180.
doi: 10.1016/j.copbio.2019.12.017 |
| [36] |
Ishii R, Imai Y, Wada M, et al. Adsorption and desorption behaviors of flavor molecules into a microporous pillared clay mineral and the application to flavor capsule composites[J]. Applied Clay Science, 2006, 33: 99-108.
doi: 10.1016/j.clay.2006.04.009 |
| [37] |
Feng Y, Chen Q, Jiang M, et al. Tailoring the properties of UiO-66 through defect engineering: A review[J]. Industrial & Engineering Chemistry Research, 2019, 58: 17646-17659.
doi: 10.1021/acs.iecr.9b03188 |
| [38] |
Zou D, Liu D. Understanding the modifications and applications of highly stable porous frameworks via UiO-66[J]. Materials Today Chemistry, 2019, 12: 139-165.
doi: 10.1016/j.mtchem.2018.12.004 |
| [39] |
Liu Y, Wang Y, Huang J, et al. Encapsulation and controlled release of fragrances from functionalized porous metal-organic frameworks[J]. AIChE Journal, 2018, 65: 491-499.
doi: 10.1002/aic.v65.2 |
| [40] |
Mao D, Xie C, Li Z, et al. Adsorption and controlled release of three kinds of flavors on UiO-66[J]. Food Science & Nutrition, 2020, 8: 1914-1922.
doi: 10.1002/fsn3.v8.4 |
| [41] |
Dummert S V, Saini H, Hussain M Z, et al. Cyclodextrin metal-organic frameworks and derivatives: Recent developments and applications[J]. Chemical Society Reviews, 2022, 51: 5175-5213.
doi: 10.1039/d1cs00550b pmid: 35670434 |
| [42] |
Roy I, Stoddart J F. Cyclodextrin metal-organic frameworks and their applications[J]. Accounts of Chemical Research, 2021, 54: 1440-1453.
doi: 10.1021/acs.accounts.0c00695 pmid: 33523626 |
| [43] | Abualhasan M N, Zaid A N, Jaradat N, et al. GC Method validation for the analysis of menthol in suppository pharmaceutical dosage form[J]. International Journal of Analytical Chemistry, 2017: 1-5. |
| [44] |
Phunpee S, Saesoo S, Sramala I, et al. A comparison of eugenol and menthol on encapsulation characteristics with water-soluble quaternized β-cyclodextrin grafted chitosan[J]. International Journal of Biological Macromolecules, 2016, 84: 472-480.
doi: 10.1016/j.ijbiomac.2015.11.006 pmid: 26552020 |
| [45] |
Sakai T, Akagi Y, Suzuki H, et al. Structural characterization of a cyclodextrin/l-menthol inclusion complex in the solid-state by solid-state NMR and vibrational circular dichroism[J]. Analytical Sciences, 2020, 36: 1337-1343.
doi: 10.2116/analsci.20P120 |
| [46] |
Hu Z, Shao M, Zhang B, et al. Enhanced stability and controlled release of menthol using a β-cyclodextrin metal-organic framework[J]. Food Chemistry, 2022, 374: 131760.
doi: 10.1016/j.foodchem.2021.131760 |
| [47] |
Ates K, Yildiz Z I. Encapsulation of carvacrol in β-cyclodextrin metal-organic frameworks: Improved solubility, stability, antioxidant capacity and controlled release of carvacrol[J]. Journal of Food Engineering, 2025, 391: 112445.
doi: 10.1016/j.jfoodeng.2024.112445 |
| [48] |
Zhang C, Zhang L, Zhao M, et al. Enhanced encapsulation of linalyl acetate in cyclodextrin-based metal-organic frameworks for improved stability[J]. Molecules, 2025, 30: 2698.
doi: 10.3390/molecules30132698 |
| [49] |
Zhang T L, Chen G. Photorelease and antioxidant activity of avobenzone-ferulic acid[J]. Chemical Journal of Chinese Universities, 2024, 45: 20240056.
doi: 10.7503/cjcu20240056 |
| [50] |
Lu B, Wang Z, Xu Y, et al. Anti-aging and anti-inflammatory fulfilled through the delivery of supramolecular bakuchiol in ionic liquid[J]. Supramolecular Materials, 2025, 4: 100093.
doi: 10.1016/j.supmat.2025.100093 |
| [51] | Jiang W, Jiang H, Liu W, et al. Pickering emulsion templated proteinaceous microsphere with bio-stimuli responsiveness[J]. Acta Physico-Chimica Sinica, 2023, 39: 2301041. |
| [52] |
Gao Z, Cui X, Cui J. Multicompartment polymer capsules[J]. Supramolecular Materials, 2022, 1: 100015.
doi: 10.1016/j.supmat.2022.100015 |
| [53] |
Cherian P A, Bergfeld W F, Belsito D V, et al. Safety assessment of methylxanthines as used in cosmetics[J]. International Journal of Toxicology, 2024, 43: 42-77.
doi: 10.1177/10915818241260282 |
| [54] |
Elias M L, Israeli A F, Madan R. Caffeine in skincare[J]. Indian Journal of Dermatology, 2023, 68: 546-550.
doi: 10.4103/ijd.ijd_166_22 |
| [55] |
Zhong G, Liu D, Zhang J. Applications of porous metal-organic framework MIL-100(M) (M=Cr, Fe, Sc, Al, V)[J]. Crystal Growth & Design, 2018, 18: 7730-7744.
doi: 10.1021/acs.cgd.8b01353 |
| [56] |
Márquez A G, Hidalgo T, Lana H, et al. Biocompatible polymer-metal-organic framework composite patches for cutaneous administration of cosmetic molecules[J]. Journal of Materials Chemistry B, 2016, 4: 7031-7040.
doi: 10.1039/c6tb01652a pmid: 32263570 |
| [57] | Zornoza B, Rubio C, Piera E, et al. Caffeine encapsulation in metal organic framework MIL-53(Al)at pilot plant ccale for preparation of polyamide textile fibers with cosmetic properties[J]. ACS Applied Materials & Interfaces, 2022, 14: 22476-22488. |
| [58] | Cong W P, Zhou L N. Fluorescent detection of hydrogen sulfide using metal-organic framework CAU-10-NH-DNBA functionalized with 3, 5-dinitrobenzoic acid[J]. Chemical Journal of Chinese Universities, 2024, 45: 20240069. |
| [59] |
Mandel R M, Lotlikar P S, Runčevski T, et al. Transdermal hydrogen sulfide delivery enabled by open-metal-site metal-organic frameworks[J]. Journal of the American Chemical Society, 2024, 146: 18927-18937.
doi: 10.1021/jacs.4c00674 pmid: 38968420 |
| [60] |
Coats J G, Maktabi B, Abou-Dahech M S, et al. Blue light protection, part Ⅱ—Ingredients and performance testing methods[J]. Journal of Cosmetic Dermatology, 2020, 20: 718-723.
doi: 10.1111/jocd.v20.3 |
| [61] |
Xiao J, Li H, Zhao W, et al. Zinc-metal-organic frameworks with tunable UV diffuse-reflectance as sunscreens[J]. Journal of Nanobiotechnology, 2022, 20: 87.
doi: 10.1186/s12951-022-01292-1 pmid: 35183191 |
| [1] | 戴嘉垚, 陶怀, 肖作为, 周一苗. 电感耦合等离子体发射光谱法(ICP-OES)测定化妆品中8种重金属含量[J]. 日用化学工业(中英文), 2025, 55(9): 1215-1220. |
| [2] | 周奕霏, 罗飞亚, 孙磊, 杨会英, 裴新荣, 吴先富, 路勇. 浅析《毒理学关注阈值(TTC)方法应用技术指南》[J]. 日用化学工业(中英文), 2025, 55(8): 1042-1048. |
| [3] | 杨朝晖, 邱湘, 李宇奇, 赵欢欢, 吴二敏, 成志伟. 植物细胞工程技术在化妆品原料中的开发与应用进展[J]. 日用化学工业(中英文), 2025, 55(8): 1049-1057. |
| [4] | 王璐, 冉丹, 汪辉, 何邵彤, 皮露露, 邓楠. UPLC-MS/MS法检测化妆品中的绿脓菌素和藤黄绿菌素[J]. 日用化学工业(中英文), 2025, 55(8): 1066-1071. |
| [5] | 洪灯, 周江, 严媛, 尚凡贞, 刘婷, 王良莉, 谢文. 高效液相色谱法同时测定化妆品中5种禁用酚类[J]. 日用化学工业(中英文), 2025, 55(8): 1072-1077. |
| [6] | 刘瑞娜, 姜彪, 林雅芳, 杨丽哲, 翟磊, 李昆, 姚粟. 基于双培养体系的化妆品微生物ATP生物荧光增幅法适用性研究[J]. 日用化学工业(中英文), 2025, 55(7): 909-919. |
| [7] | 吴凡, 张嘉琪, 秦毅, 王俊, 吴宗翰, 盘瑶. 化妆品活性成分通过细胞自噬发挥护肤功效的研究进展[J]. 日用化学工业(中英文), 2025, 55(6): 803-810. |
| [8] | 宫旭, 孙晶, 冯有龙. 超高效液相色谱-三重四极杆/线性离子阱串联质谱法测定睫毛相关化妆品中的7种前列腺素类似物[J]. 日用化学工业(中英文), 2025, 55(6): 811-816. |
| [9] | 杨雅君, 刘畅. 基于情感视角的女性日用化妆品包装设计及应用研究[J]. 日用化学工业(中英文), 2025, 55(5): 659-667. |
| [10] | 李婷, 马紫英, 刘吉泉, 崔生辉, 景宇, 白飞荣, 姚粟. 化妆品微生物ATP生物荧光增幅检测技术的双培养体系构建及可行性研究[J]. 日用化学工业(中英文), 2025, 55(5): 668-676. |
| [11] | 马品一, 李靖康, 高德江, 宋大千. MOFs功能化三聚氰胺海绵柱结合高效液相色谱法测定化妆品中对羟基苯甲酸酯类防腐剂[J]. 日用化学工业(中英文), 2025, 55(5): 548-553. |
| [12] | 李硕, 代静, 李庆武, 李莉. 防晒类化妆品中二氧化钛纳米颗粒的筛查方法研究[J]. 日用化学工业(中英文), 2025, 55(4): 430-436. |
| [13] | 黄炜东. UPLC-MS/MS法测定美白化妆品中10种植物原料指标性成分[J]. 日用化学工业(中英文), 2025, 55(4): 531-538. |
| [14] | 蓝云萍, 谢志洁, 赵楚杰, 刘晓纯, 王诗琼, 何秋星. 国内外合成生物学化妆品原料的研究进展与监管[J]. 日用化学工业(中英文), 2025, 55(3): 367-380. |
| [15] | 冯克然, 吴晓鸣, 马亮波, 孙宇. UHPLC-MS/MS法检测化妆品中21种非甾体抗炎药[J]. 日用化学工业(中英文), 2025, 55(3): 399-406. |
|
||
