日用化学工业(中英文) ›› 2025, Vol. 55 ›› Issue (6): 803-810.doi: 10.3969/j.issn.2097-2806.2025.06.015
吴凡1,2,张嘉琪1,2,秦毅1,2,王俊1,2,吴宗翰3,盘瑶1,2,*()
收稿日期:
2024-06-06
修回日期:
2025-05-28
出版日期:
2025-06-22
发布日期:
2025-07-01
Fan Wu1,2,Jiaqi Zhang1,2,Yi Qin1,2,Jun Wang1,2,Zonghan Wu3,Yao Pan1,2,*()
Received:
2024-06-06
Revised:
2025-05-28
Online:
2025-06-22
Published:
2025-07-01
Contact:
E-mail: 摘要:
自噬作为一种细胞稳态维持机制,可清除受损或多余的蛋白质和细胞器。一些化妆品活性成分可通过调节自噬,清除细胞中的废物和调节相关通路与细胞功能,从而发挥修复细胞损伤、减缓非酶糖基化进程、修护皮肤屏障损伤,减少黑色素生成与皮脂分泌等作用,在化妆品开发应用中存在巨大的前景。文章综述了自噬在抗衰老、修护皮肤屏障、美白与控油功效方面发挥的作用及其分子机制,归纳了调节自噬改善皮肤状态的化妆品活性成分,最后对其在化妆品行业中的发展前景和开发方向进行了展望。
中图分类号:
吴凡, 张嘉琪, 秦毅, 王俊, 吴宗翰, 盘瑶. 化妆品活性成分通过细胞自噬发挥护肤功效的研究进展[J]. 日用化学工业(中英文), 2025, 55(6): 803-810.
Fan Wu, Jiaqi Zhang, Yi Qin, Jun Wang, Zonghan Wu, Yao Pan. Progress of cosmetic active ingredients exerting skincare efficacy through cellular autophagy[J]. China Surfactant Detergent & Cosmetics, 2025, 55(6): 803-810.
表 1
影响细胞自噬的活性成分在化妆品领域中的应用"
活性成分种类 | 活性成分 | 作用对象 | 原理 | 功能特性 | 参考文献 | |
---|---|---|---|---|---|---|
多酚类化合物 | 类黄酮 | 儿茶素衍生物(EGCG含量 最多) | HaCaT细胞、皮脂腺细胞、成纤维细胞 | 抑制AMPK-mTOR-ULK1信号通路,激活细胞自噬,激活Nrf2通路 | 抗炎,抗氧化,抑制痤疮丙酸杆菌,减少皮脂分泌,缓解痤疮 | [ |
黄芩苷 | 成纤维细胞 | 抑制AMPK-mTOR-ULK1信号通路,激活自噬,下调ROS与氧化DNA加合物 | 抗氧化,减缓DNA损伤 | [ | ||
非类黄酮 | 紫檀芪 | B16F10细胞 | 抑制AMPK-mTOR-ULK1信号通路,激活自噬,影响MITF-CREB-酪氨酸酶途径,降解黑素小体 | 美白 | [ | |
鞣花酸 | B16F10细胞 | 影响PI3K/AKT/mTOR通路和Beclin-1/Bcl-2,激活自噬,影响MITF-CREB-酪氨酸酶途径 | 美白 | [ | ||
白藜芦醇 | 成纤维细胞 | 抑制AMPK-mTOR-ULK1信号通路,激活自噬,下调ROS,抑制细胞凋亡,恢复正常细胞周期,降低MMPs表达 | 抗氧化,抗炎,修护皮肤屏障,减少胶原降解 | [ | ||
丁香树脂酚 | HaCaT细胞 | 影响NF-κB对MMP的调控,抑制MMPs活性 | 减少胶原降解 | [ | ||
羟基酪醇 | H2O2损伤大鼠真皮细胞 | 下调ROS水平,减少H2O2损伤诱导的炎性细胞因子IL-6和TNF-α的释放 | 抗炎,抗氧化 | [ | ||
多糖 | 金银花多糖 | 特应性皮炎小鼠模型 | 上调p62激活Nrf2通路 | 抗炎,抗氧化 | [ | |
石斛多糖 | 光老化HaCaT细胞模型小鼠皮肤模型 | 促进细胞自噬,抗氧化,减少细胞凋亡与DNA损伤 | 抗氧化,抗炎,缓解DNA损伤 | [ | ||
皂苷类 | 黄芪甲苷 | 大鼠真皮成纤维细胞 | 下调ROS水平,调节NF-κB通路,降低MMPs的表达 | 抗氧化,减少胶原降解 | [ | |
有机酸 | 熊果酸 | B16F10细胞 | 促进黑素小体降解 | 美白 | [ | |
3-O-甘油-2-O-己基抗坏血酸酯 | B16F10细胞 | 激活自噬,影响MITF-CREB- 酪氨酸酶途径 | 美白(下调MITF基因表达途径) | [ | ||
紫草酸 | 银屑病模型小鼠 | 增加皮肤水合作用,抑制皮肤红斑与角质形成细胞过度增殖,缓解了皮肤炎症并减少角质化程度 | 修护皮肤屏障 | [ | ||
醌类化合物 | 辅酶Q0 | HaCaT细胞、B16F10 细胞 | 诱导自噬,抑制 CREB-MITF通路与酪氨酸酶表达/活性,并且降解黑素小体 | 美白 | [ |
[1] | Ren H, Zhao F, Zhang Q, et al. Autophagy and skin wound healing[J]. Burns & Trauma, 2022, 10: tkac003. |
[2] |
Guo Y Y, Zhang X, Wu T H, et al. Autophagy in skin diseases[J]. Dermatology, 2019, 235 (5) : 380-389.
doi: 10.1159/000500470 |
[3] | Lotfoliahi Z. The anatomy, physiology and function of all skin layers and the impact of ageing on the skin[J]. Wound Practice and Research, 2024, 32 (1) : 6-10. |
[4] | Wang Y J, Wen X, Hao D, et al. Insights into autophagy machinery in cells related to skin diseases and strategies for therapeutic modulation[J]. Biomedicine & Pharmacotherapy, 2019, 113: 108775. |
[5] |
Levine B, Klionsky D J. Development by self-digestion: Molecular mechanisms and biological functions of autophagy[J]. Developmental Cell, 2004, 6 (4) : 463-477.
doi: 10.1016/s1534-5807(04)00099-1 pmid: 15068787 |
[6] |
Saikia R, Joseph J. AMPK: a key regulator of energy stress and calcium-induced autophagy[J]. Journal of Molecular Medicine, 2021, 99 (11) : 1539-1551.
doi: 10.1007/s00109-021-02125-8 pmid: 34398293 |
[7] | Li Z, Tian X, Ji X, et al. ULK1-ATG13 and their mitotic phospho-regulation by CDK1 connect autophagy to cell cycle[J]. PLOS Biology, 2020, 18 (6) : e3000288. |
[8] |
Nakatogawa H, Suzuki K, Kamada Y, et al. Dynamics and diversity in autophagy mechanisms: lessons from yeast[J]. Nature Reviews Molecular Cell Biology, 2009, 10 (7) : 458-467.
doi: 10.1038/nrm2708 pmid: 19491929 |
[9] | Xia F, Liu P, Li M. The regulatory factors and pathological roles of autophagy-related protein 4 in diverse diseases: Recent research advances[J]. Medicinal Research Reviews, 2021, 41 (3) : 1644-1675. |
[10] | Hill D, Cosgarea I, Reynolds N, et al. Research techniques made simple: analysis of autophagy in the skin[J]. Journal of Investigative Dermatology, 2021, 141 (1) : 5. |
[11] | Lyu W, Li Q, Wang Y, et al. Computational design of binder as the LC3-p62 protein-protein interaction[J]. Bioorganic Chemistry, 2021, 115: 105241. |
[12] |
Yang Z F, Huang J, Geng J F, et al. Atg22 recycles amino acids to link the degradative and recycling functions of autophagy[J]. Molecular Biology of the Cell, 2006, 17 (12) : 5094-5104.
doi: 10.1091/mbc.e06-06-0479 pmid: 17021250 |
[13] | Csekes E, Račková L. Skin aging, cellular senescence and natural polyphenols[J]. International Journal of Molecular Sciences, 2021, 22 (23) : 12641. |
[14] | Agrawal R, Hu A, Bollag W B. The skin and inflamm-aging[J]. Biology, 2023, 12 (11) : 1396. |
[15] | Lee A Y. Skin pigmentation abnormalities and their possible relationship with skin aging[J]. International Journal of Molecular Sciences, 2021, 22 (7) : 3727. |
[16] |
de Moura J P, de Mourarnandes É P de Moura Fernandes É P, Lustoza Rodrigues T, et al. Targets involved in skin aging and photoaging and their possible inhibitors: a mini-review[J]. Current Drug Targets, 2023, 24 (10) : 797-815.
doi: 10.2174/1389450124666230719105849 pmid: 37469150 |
[17] | Kovacs M, Podda M. Skin aging and dermatological pathologies[J]. Journal fur Asthetische Chirurgie, 2021, 14 (2) : 68-73. |
[18] | Gu Y, Han J, Jiang C, et al. Biomarkers, oxidative stress and autophagy in skin aging[J]. Ageing Research Reviews, 2020, 59: 101036. |
[19] | Ma J, Teng Y, Huang Y, et al. Autophagy plays an essential role in ultraviolet radiation-driven skin photoaging[J]. Frontiers in Pharmacology, 2022, 13: 864331. |
[20] |
Wen W, Chen J, Ding L, et al. Astragaloside exerts anti-photoaging effects in UVB-induced premature senescence of rat dermal fibroblasts through enhanced autophagy[J]. Archives of Biochemistry and Biophysics, 2018, 657: 31-40.
doi: S0003-9861(18)30475-2 pmid: 30222953 |
[21] | Zhang J A, Luan C, Huang D, et al. Induction of autophagy by baicalin through the AMPK-mTOR pathway protects human skin fibroblasts from ultraviolet B radiation-induced apoptosis[J]. Drug Design, Development and Therapy, 2020: 417-428. |
[22] | Guo L, Yang Y, Pu Y, et al. Dendrobium officinale Kimura & Migo polysaccharide and its multilayer emulsion protect skin photoaging[J]. Journal of Ethnopharmacology, 2024, 318: 116974. |
[23] | Papaccio F, D′ Arino A, Caputo S, et al. Focus on the contribution of oxidative stress in skin aging[J]. Antioxidants, 2022, 11 (6) : 1121. |
[24] | Choi W, Kim H S, Park S H, et al. Syringaresinol derived from Panax ginseng berry attenuates oxidative stress-induced skin aging via autophagy[J]. Journal of Ginseng Research, 2022, 46 (4) : 536-542. |
[25] | Chen Q, Sun T, Wang J, et al. Hydroxytyrosol prevents dermal papilla cells inflammation under oxidative stress by inducing autophagy[J]. Journal of Biochemical and Molecular Toxicology, 2019, 33 (9) : e22377. |
[26] | Bai X, Rao X, Wang Y, et al. A homogeneous Lonicera japonica polysaccharide alleviates atopic dermatitis by promoting Nrf2 activation and NLRP3 inflammasome degradation via p62[J]. Journal of Ethnopharmacology, 2023, 309: 116344. |
[27] | Zheng Wenge, Li Huijuan, Go Yuyo, et al. Research advances on the damage mechanism of skin glycation and related inhibitors[J]. Nutrients, 2022, 14 (21) : 4588. |
[28] | Laughlin T, Tan Y, Jarrold B, et al. Autophagy activators stimulate the removal of advanced glycation end products in human keratinocytes[J]. Journal of the European Academy of Dermatology and Venereology, 2020, 34: 12-18. |
[29] | Park G, Sim Y, Lee W, et al. Protection on skin aging mediated by antiapoptosis effects of the water lily (Nymphaea tetragona Georgi) via reactive oxygen species scavenging in human epidermal keratinocytes[J]. Pharmacology, 2016, 97 (5/6) : 282-293. |
[30] | Ganesan A K, Ho H, Bodemann B, et al. Genome-wide siRNA-based functional genomics of pigmentation identifies novel genes and pathways that impact melanogenesis in human cells[J]. PLoS Genetics, 2008, 4 (12) : e1000298. |
[31] | Lee J W, Kim Y, Choi S J, et al. Hosta longipes inhibits melanogenesis by reducing expression of the melanocortin 1 receptor[J].Molecular & Cellular Toxicology, 2021, 17 (4) : 503-512. |
[32] | Choi M Y, Song H S, Hur H S, et al. Whitening activity of luteolin related to the inhibition of cAMP pathway in α-MSH-stimulated B16 melanoma cells[J]. Archives of Pharmacal Research, 2008, 31: 1166-1171. |
[33] | 杨小玉, 刘金俊, 刘蕾, 等. 黑色素的生成代谢机制及研究方法进展[J]. 日用化学工业(中英文), 2023, 53 (10) : 1194-1203. |
[34] | Lee K W, Kim M, Lee S H, et al. The function of autophagy as a regulator of melanin homeostasis[J]. Cells, 2022, 11 (13) : 2085. |
[35] | Hseu Y C, Gowrisankar Y V, Wang L W, et al. The in vitro and in vivo depigmenting activity of pterostilbene through induction of autophagy in melanocytes and inhibition of UVA-irradiated α-MSH in keratinocytes via Nrf2-mediated antioxidant pathways[J]. Redox Biology, 2021, 44: 102007. |
[36] | Yang H L, Lin C P, Gowrisankar Y V, et al. The anti-melanogenic effects of ellagic acid through induction of autophagy in melanocytes and suppression of UVA-activated α-MSH pathways via Nrf2 activation in keratinocytes[J]. Biochemical Pharmacology, 2021, 185: 114454. |
[37] |
Park H J, Jo D S, Choi D S, et al. Ursolic acid inhibits pigmentation by increasing melanosomal autophagy in B16F1 cells[J]. Biochemical and Biophysical Research Communications, 2020, 531 (2) : 209-214.
doi: S0006-291X(20)31526-6 pmid: 32792197 |
[38] | Chen S J, Hseu Y C, Gowrisankar Y V, et al. The anti-melanogenic effects of 3-O-ethyl ascorbic acid via Nrf2-mediated α-MSH inhibition in UVA-irradiated keratinocytes and autophagy induction in melanocytes[J]. Free Radical Biology and Medicine, 2021, 173: 151-169. |
[39] | Hseu Y C, Yeh J T, Vadivalagan C, et al. The in vitro and in vivo depigmentation activity of coenzyme Q0, a major quinone derivative from Antrodia camphorata, through autophagy induction in human melanocytes and keratinocytes[J]. Cell Communication and Signaling, 2024, 22 (1) : 151. |
[40] | Phacharapiyangkul N, Thirapanmethee K, Sa-Ngiamsuntorn K, et al. The ethanol extract of Musa sapientum Linn. Peel inhibits melanogenesis through AKT signaling pathway[J]. Cosmetics, 2021, 8 (3) : 70. |
[41] | Lee K W, Nguyen D T, Kim M, et al. Amorphigenin from Amorpha fruticosa L. root extract induces autophagy-mediated melanosome degradation in mTOR-independent-and AMPK-dependent manner[J]. Current Issues in Molecular Biology, 2022, 44 (7) : 2856-2867. |
[42] | Choi E H. Aging of the skin barrier[J]. Clinics in Dermatology, 2019, 37 (4) : 336-345. |
[43] | Geng Q, Wei G, Hu Y, et al. Alterations of autophagy modify lipids in epidermal keratinocytes[J]. Clinical, Cosmetic and Investigational Dermatology, 2023: 1569-1581. |
[44] | Liu C, Gu L, Ding J, et al. Autophagy in skin barrier and immune-related skin diseases[J]. The Journal of Dermatology, 2021, 48 (12) : 1827-1837. |
[45] | Choi M S, Chae Y J, Choi J W, et al. Potential therapeutic approaches through modulating the autophagy process for skin barrier dysfunction[J]. International Journal of Molecular Sciences, 2021, 22 (15) : 7869. |
[46] | Chen L C, Cheng Y P, Liu C Y, et al. Lithosepermic acid restored the skin barrier functions in the imiquimod-induced psoriasis-like animal model[J]. International Journal of Molecular Sciences, 2022, 23 (11) : 6172. |
[47] | Xia Y, Zhang H, Wu X, et al. Resveratrol activates autophagy and protects from UVA-induced photoaging in human skin fibroblasts and the skin of male mice by regulating the AMPK pathway[J]. Biogerontology, 2024: 1-16. |
[48] | Lee Y, Shin K, Shin K O, et al. Topical application of autophagy-activating peptide improved skin barrier function and reduced acne symptoms in acne-prone skin[J]. Journal of Cosmetic Dermatology, 2021, 20 (3) : 1009-1016. |
[49] |
Seo S H, Jung J Y, Park K, et al. Autophagy regulates lipid production and contributes to the sebosuppressive effect of retinoic acid in human SZ95 sebocytes[J]. Journal of Dermatological Science, 2020, 98 (2) : 128-136.
doi: S0923-1811(20)30134-1 pmid: 32354609 |
[50] |
代歆悦, 莫子茵, 高爱莉, 等. 茶多酚诱导的Nrf2通路和自噬在痤疮发病机制中的作用[J]. 皮肤性病诊疗学杂志, 2019, 26 (2) : 117-120.
doi: 10.3969/j.issn.1674-8468.2019.02.016 |
[51] | Wible D J, Bratton S B. Reciprocity in ROS and autophagic signaling[J]. Current Opinion in Toxicology, 2018, 7: 28-36. |
[52] | Pincha D S M F, Mei J P, Kyoung A K, et al. Hesperidin protects human HaCaT keratinocytes from particulate matter 2.5-induced apoptosis via the inhibition of oxidative stress and autophagy[J]. Antioxidants, 2022, 11 (7) : 1363. |
[53] | Han S, Liu P, Yan Q, et al. Seawater pearl hydrolysate inhibits photoaging via decreasing oxidative stress, autophagy and apoptosis of Ultraviolet B-induced human skin keratinocytes[J]. Journal of Cosmetic Dermatology, 2024, 23 (1) : 256-270. |
[1] | 宫旭, 孙晶, 冯有龙. 超高效液相色谱-三重四极杆/线性离子阱串联质谱法测定睫毛相关化妆品中的7种前列腺素类似物[J]. 日用化学工业(中英文), 2025, 55(6): 811-816. |
[2] | 杨雅君, 刘畅. 基于情感视角的女性日用化妆品包装设计及应用研究[J]. 日用化学工业(中英文), 2025, 55(5): 659-667. |
[3] | 李婷, 马紫英, 刘吉泉, 崔生辉, 景宇, 白飞荣, 姚粟. 化妆品微生物ATP生物荧光增幅检测技术的双培养体系构建及可行性研究[J]. 日用化学工业(中英文), 2025, 55(5): 668-676. |
[4] | 马品一, 李靖康, 高德江, 宋大千. MOFs功能化三聚氰胺海绵柱结合高效液相色谱法测定化妆品中对羟基苯甲酸酯类防腐剂[J]. 日用化学工业(中英文), 2025, 55(5): 548-553. |
[5] | 黄炜东. UPLC-MS/MS法测定美白化妆品中10种植物原料指标性成分[J]. 日用化学工业(中英文), 2025, 55(4): 531-538. |
[6] | 李硕, 代静, 李庆武, 李莉. 防晒类化妆品中二氧化钛纳米颗粒的筛查方法研究[J]. 日用化学工业(中英文), 2025, 55(4): 430-436. |
[7] | 杨武成, 谢宇, 魏剑, 范瑞芳, 谭建华, 席绍峰. 共聚焦拉曼光谱在皮肤屏障功能评估和经皮吸收研究中的应用[J]. 日用化学工业(中英文), 2025, 55(4): 508-515. |
[8] | 蓝云萍, 谢志洁, 赵楚杰, 刘晓纯, 王诗琼, 何秋星. 国内外合成生物学化妆品原料的研究进展与监管[J]. 日用化学工业(中英文), 2025, 55(3): 367-380. |
[9] | 赵化冰, 李颖甜, 王熙函, 黄正梅, 路福平. 皮肤微生态与微生态护肤品[J]. 日用化学工业(中英文), 2025, 55(3): 390-398. |
[10] | 冯克然, 吴晓鸣, 马亮波, 孙宇. UHPLC-MS/MS法检测化妆品中21种非甾体抗炎药[J]. 日用化学工业(中英文), 2025, 55(3): 399-406. |
[11] | 赵楚杰,吴丽晴,何秋星,杨峥,叶吕阳光,原丽红. 中国海参养殖现状与护肤功效研究进展[J]. 日用化学工业(中英文), 2025, 55(2): 225-234. |
[12] | 宫旭,刘雪静,尚姝,向健华,吴莉,冯有龙,方方. 超高效液相色谱-三重四极杆/线性离子阱质谱法测定化妆品中16种荧光增白剂[J]. 日用化学工业(中英文), 2025, 55(2): 244-252. |
[13] | 郑佳新, 闵春艳, 鲁辉, 陆林玲, 贾昌平. UPLC-ESI-Q-TOF/MS法测定化妆品中甲基泼尼松及其9种类似物[J]. 日用化学工业(中英文), 2025, 55(1): 110-116. |
[14] | 张秋炎, 廖均涛, 梁维维, 黄芳, 吴惠勤, 罗辉泰. UPLC-MS/MS法测定化妆品中14种噻嗪类药物[J]. 日用化学工业(中英文), 2025, 55(1): 117-124. |
[15] | 张帆, 贺东琴, 卞前进, 吴凡, 秦毅, 盘瑶. 基于细胞自噬的维生素C抗黑素生成作用研究[J]. 日用化学工业(中英文), 2025, 55(1): 83-88. |
|