[1] |
李树欣, 赵莹莹, 李鑫. 纳米氧化锌作为抗肿瘤药物载体的研究进展[J]. 广东化工, 2020, 47 (17) : 78-79.
|
[2] |
季金金, 左士祥, 刘文杰, 等. TiO2/ZnO/木质素全波段紫外屏蔽剂的制备及其防晒性能研究[J]. 现代化工, 2021, 41 (10) : 157-161, 167.
doi: 10.16606/j.cnki.issn0253-4320.2021.10.032
|
[3] |
谭文波, 蒙衍强. 纳米氧化锌的合成及紫外吸收能力研究[J]. 日用化学工业(中英文), 2023, 53 (8) : 908-914.
|
[4] |
Baek M, Chung H E, Yu J, et al. Pharmacokinetics, tissue distribution, and excretion of zinc oxide nanoparticles[J]. International Journal of Nanomedicine, 2012: 3081-3097.
|
[5] |
McDonald K A, Lytvyn Y, Mufti A, et al. Review on photoprotection: a clinician’s guide to the ingredients, characteristics, adverse effects, and disease-specific benefits of chemical and physical sunscreen compounds[J]. Archives of Dermatological Research, 2023, 315 (4) : 735-749.
|
[6] |
Pinto D, Trink A, Giuliani G, et al. Protective effects of sunscreen (50+) and octatrienoic acid 0.1% in actinic keratosis and UV damages[J]. Journal of Investigative Medicine, 2022, 70 (1) : 92-98.
|
[7] |
Petrosyan T R, Nameq R A. Assessing the frequency of adverse reactions induced by melanin-containing formulations used for the management of solar dermatitis[J]. Journal of Cosmetic Dermatology, 2022, 21 (7) : 3140-3145.
|
[8] |
黄文艺, 吕晓威, 王崇罡, 等. 片状多孔纳米氧化锌的制备及光催化性能研究[J]. 化工新型材料, 2020, 48 (1) : 196-199, 206.
|
[9] |
姚超, 吴凤芹, 林西平, 等. 纳米技术与纳米材料(Ⅵ): 纳米氧化锌在防晒化妆品中的应用[J]. 日用化学工业, 2003 (6) : 393-397.
|
[10] |
Schneider S L, Lim H W. A review of inorganic UV filters zinc oxide and titanium dioxide[J]. Photodermatology, Photoimmunology & Photomedicine, 2019, 35 (6) : 442-446.
|
[11] |
张祺, 毕成, 李耀刚, 等. 纳米SiO2表面改性及其分散性能研究[J]. 化工新型材料, 2008 (5) : 41-42.
|
[12] |
Li L, Chong L, Huang T, et al. Natural products and extracts from plants as natural UV filters for sunscreens: A review[J]. Animal Models and Experimental Medicine, 2023, 6 (3) : 183-195.
|
[13] |
刘鹤, 孙杰, 费晓伟, 等. 原花青素生理功效和分析研究进展[J]. 食品研究与开发, 2023, 44 (12) : 211-217.
|
[14] |
Gupta M, Ahmad J, Ahamad J, et al. Flavonoids as promising anticancer therapeutics: Contemporary research, nanoantioxidant potential, and future scope[J]. Phytotherapy Research, 2023, 37 (11) : 5159-5192.
doi: 10.1002/ptr.7975
pmid: 37668281
|
[15] |
Bagchi D, Swaroop A, Preuss H G, et al. Free radical scavenging, antioxidant and cancer chemoprevention by grape seed proanthocyanidin: an overview[J]. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 2014, 768: 69-73.
|
[16] |
Song W, Zhao Y Y, Ren Y J, et al. Proanthocyanidins isolated from the leaves of Photinia×fraseri block the cell cycle and induce apoptosis by inhibiting tyrosinase activity in melanoma cells[J]. Food & Function, 2021, 12 (9) : 3978-3991.
|
[17] |
Yang H, Xu P, Song W, et al. Anti-tyrosinase and antioxidant activity of proanthocyanidins from Cinnamomum camphora[J]. International Journal of Food Properties, 2021, 24 (1) : 1265-1278.
|
[18] |
Semenov A V, Balakireva O I, Tarasova I V, et al. Synthesis, theoretical, and experimental study of radical scavenging activity of 3-pyridinol containing trans-resveratrol analogs[J]. Medicinal Chemistry Research, 2018, 27 (4) : 1298-1308.
|
[19] |
Alejandria M, Marra A, Roberts G, et al. Disparate SPF testing methodologies generate similar SPFs. Ⅱ. analysis of P2 standard control SPF data[J]. Journal of Cosmetic Science, 2019, 70 (4) : 181-196.
pmid: 31441772
|
[20] |
李夏. 葡萄中花青素含量的测定与分析[J]. 现代食品, 2022, 28 (15) : 179-182.
|
[21] |
姚超. 纳米 TiO2合成, 表面处理及其防团聚研究[D]. 南京: 南京理工大学, 2006.
|
[22] |
Tie S, Zhang X, Wang H, et al. Procyanidins-loaded complex coacervates for improved stability by self-crosslinking and calcium ions chelation[J]. Journal of Agricultural and Food Chemistry, 2020, 68 (10) : 3163-3170.
doi: 10.1021/acs.jafc.0c00242
pmid: 32069043
|