日用化学工业(中英文) ›› 2023, Vol. 53 ›› Issue (10): 1194-1203.doi: 10.3969/j.issn.2097-2806.2023.10.011
杨小玉1,刘金俊2,刘蕾1,*(),何聪芬1,毕永贤2,李昊2
收稿日期:
2022-09-08
修回日期:
2023-09-24
出版日期:
2023-10-22
发布日期:
2023-10-27
基金资助:
Yang Xiaoyu1,Liu Jinjun2,Liu Lei1,*(),He Congfen1,Bi Yongxian2,Li Hao2
Received:
2022-09-08
Revised:
2023-09-24
Online:
2023-10-22
Published:
2023-10-27
Contact:
*Tel.: +86-18611801510, E-mail: 摘要:
随着时代的发展,“以白为美”思潮在近几年迎来了高涨期,美白市场空前繁荣。黑色素合成代谢过程在很大程度上调控着皮肤的颜色,因此美白剂的开发主要依赖于活性物质对黑色素的调节作用。本文将黑色素的合成、转运以及代谢过程细分为以下五个步骤:1)黑素细胞内黑素小体的装配;2)黑素小体的成熟及黑素的合成;3)成熟的黑素小体向黑素细胞树突状远端移动;4)黑素小体转移至角质形成细胞;5)黑素小体在角质形成细胞中的再分布或降解、排出。结合以上五个步骤的最新研究进展对其关键机制、重要标志物以及检测方法进行总结阐述,为美白剂的开发提供更加具体且科学的理论基础及开发思路。
中图分类号:
杨小玉, 刘金俊, 刘蕾, 何聪芬, 毕永贤, 李昊. 黑色素的生成代谢机制及研究方法进展[J]. 日用化学工业(中英文), 2023, 53(10): 1194-1203.
Yang Xiaoyu, Liu Jinjun, Liu Lei, He Congfen, Bi Yongxian, Li Hao. Progress in metabolic mechanism and research methods of melanin production[J]. China Surfactant Detergent & Cosmetics, 2023, 53(10): 1194-1203.
表1
日本批准美白活性成分清单"
批准年份/年 | INCI名称/物质名称 | 原料名称 | 主要作用机制 |
---|---|---|---|
1983 | Magnesium Ascorbyl Phosphate | 抗坏血酸磷酸脂镁 | 抑制酪氨酸酶活性 |
1988 | Kojic Acid | 曲酸 | 抑制酪氨酸酶活性 |
1989 | Arbutin | 熊果苷 | 抑制酪氨酸酶活性 |
1994 | Ascorbyl Glucoside | 抗坏血酸葡萄糖苷 | 抑制酪氨酸酶活性 |
1997 | Ellagic Acid | 鞣花酸 | 抑制酪氨酸酶活性 |
1998 | Rucinol? | 芸香醇? | 抑制酪氨酸酶活性 |
1999 | Chrysanthellum Indicum | 洋甘菊 | 内皮素阻滞剂 |
2001 | Linoleic Acid | 亚油酸 | 降解酪氨酸酶,刺激表皮更新 |
2002 | Tranexamic Acid | 氨甲环酸 | 抑制前列腺素E2(PGE2)的产生 |
2003 | Potassium Methoxysalicylate | 甲氧基水杨酸钾 | 抑制酪氨酸酶活性 |
2004 | Vitamin C Ethyl | 3-O-乙早抗坏血酸醚 | 抑制酪氨酸酶活性 |
2004 | Adenosine Mono Phosphate | Energy signal AMP? | 加速表皮更新 |
2005 | 5,5-dipropyl-biphenyl-2,2-diol | Magnolignan? | 抑制酪氨酸酶活性 |
2007 | Niacinamide | 烟酰胺 | 抑制黑素体转移 |
2008 | 4-(4-hydroxyphenyl)-2-butanol | Rhododenol? | 抑制酪氨酸酶活性 |
2008 | Tranexamic Acid Cetyl Ester Hydrochloride | TXC | 抑制前列腺素E2(PGE2)的产生 |
2009 | Ascorbyl Tetraisopalmitate | 抗坏血酸四异棕榈酸酯 | 抑制酪氨酸酶活性 |
2018 | Dexpanthenol | Dexpanthenol W (PCE-DP) | 加速表皮新陈代谢 |
表2
美白开发路径及进展"
步骤 | 黑色素合成阶段 | 相关因素 | 作用机理 | 活性成分示例 |
---|---|---|---|---|
1 | 黑素细胞内黑素体的装配 | ILK | 保留未成熟的黑素体至核周区域 | 未开发 |
TYR的合成装配 | 细胞内pH值变化的影响TYR向黑素体的运输 | 聚甲氧基黄酮混合物[ | ||
Pmel17(gp100) | 形成Ⅱ期黑素体的内部纤维状基质 | 未开发 | ||
2 | 黑素小体的成熟及黑素的合成 | 外界刺激(紫外、压力等) | 抑制光传导信号通路(如ORAI1),降低黑色素合成水平 | 茴香提取物[ |
旁分泌因子 | 角质形成细胞和成纤维细胞等分泌的调控因子、自由基、炎症因子等刺激黑素细胞黑素生成反应 | 绿茶[ | ||
胞内信号传导 | 细胞内黑素生成信号通路刺激黑素生成 | 甘草[ | ||
黑素合成相关酶 | 通过抑制细胞内黑素合成相关酶活性及其基因表达水平调节黑色素合成 | 熊果苷[ | ||
黑素还原剂 | 将已形成的黑色素还原呈无色 | 维生素E[ | ||
3 | 成熟黑素小体向黑素细胞树突状远端移动 | 微管运输网络 | 驱动蛋白和动力蛋白控制微管中黑素体的双向运动和定位 | 未开发 |
肌动蛋白纤维运输网络 | Rab27A复合物调控肌动蛋白纤维转运,调节黑素体运输 | 大蕉(MUSASAPIENTUM)果提取物[ | ||
4 | 黑素小体转移至角质形成细胞 | 蛋白酶激活受体2(PAR-2) | 角质形成细胞内产生的七跨膜G蛋白偶联受体,介导黑素体转移 | 烟酰胺及其衍生物[ |
α-促黑素细胞激素(α-MSH) | 刺激成熟黑素体从黑素细胞转移至周围的角质形成细胞中 | 红南瓜籽提取物[ | ||
树突数量及长短 | Rho和Rac家族是树突形成的主要调节因子 | 人参皂苷F1[ | ||
5 | 黑素小体在角质形成细胞中的再分布或降解、排除 | 溶酶体水解酶 | 溶酶体水解酶在黑素随角质形成细胞上移过程中对黑素体进行降解 | 异甘草素[ |
自噬相关蛋白(如ATG7、LC3...) | 自噬通过调节角质形成细胞中的黑素体降解 | 茶碱[ | ||
表皮重塑和脱屑 | 加速皮肤更新速度 | 乙醇酸、乳酸[ |
[1] |
Tadokoro R, Shikaya Y, Takahashi Y. Wide coverage of the body surface by melanocyte-mediated skin pigmentation[J]. Developmental Biology, 2019, 449 (2) : 83-89.
doi: S0012-1606(17)30601-2 pmid: 29698617 |
[2] |
Pinkert S, Zeuss D. Thermal biology: melanin-based energy harvesting across the tree of life[J]. Current Biology, 2018, 28 (16) : 887-889.
doi: S0960-9822(18)30925-4 pmid: 30130512 |
[3] |
Kim K, Lee Y S, Kim N, et al. 5G electromagnetic radiation attenuates skin melanogenesis in vitro by suppressing ROS generation[J]. Antioxidants, 2022, 11 (8) : 1449.
doi: 10.3390/antiox11081449 |
[4] |
Maeda K. Timeline of the development of skin-lightening active ingredients in Japan[J]. Molecules, 2022, 27 (15) : 4774.
doi: 10.3390/molecules27154774 |
[5] |
Martínez-Esparza M, Ferrer C, Castells M T, et al. Transforming growth factor β1 mediates hypopigmentation of B16 mouse melanoma cells by inhibition of melanin formation and melanosome maturation[J]. The International Journal of Biochemistry & Cell Biology, 2001, 33 (10) : 971-983.
doi: 10.1016/S1357-2725(01)00068-1 |
[6] |
Crawford M, Liu N, Mahdipour E, et al. Integrin-linked kinase regulates melanosome trafficking and melanin transfer in melanocytes[J]. Molecular Biology of the Cell, 2020, 31 (8) : 768-781.
doi: 10.1091/mbc.E19-09-0510 pmid: 32049584 |
[7] |
Watabe H, Valencia J C, Le Pape E, et al. Involvement of dynein and spectrin with early melanosome transport and melanosomal protein trafficking[J]. Journal of Investigative Dermatology, 2008, 128 (1) : 162-174.
doi: 10.1038/sj.jid.5701019 pmid: 17687388 |
[8] |
Dean D N, Lee J C. pH-Dependent fibril maturation of a Pmel17 repeat domain isoform revealed by tryptophan fluorescence[J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2019, 1867 (10) : 961-969.
doi: 10.1016/j.bbapap.2019.01.012 |
[9] | Ohbayashi N, Fukuda M. Recent advances in understanding the molecular basis of melanogenesis in melanocytes[J]. F1000 Research, 2020, 9. |
[10] |
Haltaufderhyde K, Ozdeslik R N, Wicks N L, et al. Opsin expression in human epidermal skin[J]. Photochemistry and Photobiology, 2015, 91 (1) : 117-123.
doi: 10.1111/php.12354 pmid: 25267311 |
[11] |
Nam J H, Lee D U. Foeniculum vulgare extract and its constituent, trans-anethole, inhibit UV-induced melanogenesis via ORAI1 channel inhibition[J]. Journal of Dermatological Science, 2016, 84 (3) : 305-313.
doi: S0923-1811(16)30829-5 pmid: 27712859 |
[12] |
Lee K W, Kim M, Lee S H, et al. The function of autophagy as a regulator of melanin homeostasis[J]. Cells, 2022, 11 (13) : 2085.
doi: 10.3390/cells11132085 |
[13] |
Bodurlar Y, Caliskan M. Inhibitory activity of soybean (Glycine max L. Merr.) cell culture extract on tyrosinase activity and melanin formation in alpha-melanocyte stimulating Hormone-Induced B16-F10 melanoma cells[J]. Molecular Biology Reports, 2022, 49 (8) : 7827-7836.
doi: 10.1007/s11033-022-07608-6 pmid: 35733058 |
[14] |
Uto T, Ohta T, Katayama K, et al. Silibinin promotes melanogenesis through the PKA and p38 MAPK signaling pathways in melanoma cells[J]. Biomedical Research, 2022, 43 (2) : 31-39.
doi: 10.2220/biomedres.43.31 |
[15] |
Lin Y S, Chuang M T, Chen C H, et al. Nicotinic acid hydroxamate downregulated the melanin synthesis and tyrosinase activity through activating the MEK/ERK and AKT/GSK3β signaling pathways[J]. Journal of Agricultural and Food Chemistry, 2012, 60 (19) : 4859-4864.
doi: 10.1021/jf301109p |
[16] |
Kuroda T S, Ariga H, Fukuda M. The actin-binding domain of Slac2-a/melanophilin is required for melanosome distribution in melanocytes[J]. Molecular and Cellular Biology, 2003, 23 (15) : 5245-5255.
doi: 10.1128/MCB.23.15.5245-5255.2003 pmid: 12861011 |
[17] |
Hara M, Yaar M, Byers H R, et al. Kinesin participates in melanosomal movement along melanocyte dendrites[J]. Journal of Investigative Dermatology, 2000, 114 (3) : 438-443.
doi: 10.1046/j.1523-1747.2000.00894.x pmid: 10692101 |
[18] | Koike S, Yamasaki K, Yamauchi T, et al. Toll-like receptors 2 and 3 enhance melanogenesis and melanosome transport in human melanocytes[J]. Pigment Cell & Melanoma Research, 2018, 31 (5) : 570-584. |
[19] |
Bahadoran P, Aberdam E, Mantoux F, et al. Rab27a: a key to melanosome transport in human melanocytes[J]. The Journal of Cell Biology, 2001, 152 (4) : 843-850.
doi: 10.1083/jcb.152.4.843 |
[20] |
Moreiras H, Seabra M C, Barral D C. Melanin transfer in the epidermis: The pursuit of skin pigmentation control mechanisms[J]. International Journal of Molecular Sciences, 2021, 22 (9) : 4466.
doi: 10.3390/ijms22094466 |
[21] |
Seiberg M, Paine C, Sharlow E, et al. Inhibition of melanosome transfer results in skin lightening1[J]. Journal of Investigative Dermatology, 2000, 115 (2) : 162-167.
pmid: 10951231 |
[22] |
Chen H W, Chou Y S, Young T H, et al. Inhibition of melanin synthesis and melanosome transfer by chitosan biomaterials[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2020, 108 (4) : 1239-1250.
doi: 10.1002/jbm.b.v108.4 |
[23] |
Endo K, Mizutani T, Okano Y, et al. A red pumpkin seed extract reduces melanosome transfer to keratinocytes by activation of Nrf2 signaling[J]. Journal of Cosmetic Dermatology, 2019, 18 (3) : 827-834.
doi: 10.1111/jocd.12716 pmid: 30047218 |
[24] |
Crawford M, Leclerc V, Barr K, et al. Essential role for integrin-linked kinase in melanoblast colonization of the skin[J]. Journal of Investigative Dermatology, 2020, 140 (2) : 425-434.
doi: S0022-202X(19)32543-6 pmid: 31330146 |
[25] |
Mizutani Y, Yamashita M, Hashimoto R, et al. Three-dimensional structure analysis of melanocytes and keratinocytes in senile lentigo[J]. Microscopy, 2021, 70 (2) : 224-231.
doi: 10.1093/jmicro/dfaa054 pmid: 32991711 |
[26] |
Lee C S, Nam G, Bae I H, et al. Whitening efficacy of ginsenoside F1 through inhibition of melanin transfer in cocultured human melanocytes-keratinocytes and three-dimensional human skin equivalent[J]. Journal of Ginseng Research, 2019, 43 (2) : 300.
doi: 10.1016/j.jgr.2017.12.005 |
[27] | Wang J, Jarrold B, Zhao W, et al. The combination of sucrose dilaurate and sucrose laurate suppresses HMGB1: An enhancer of melanocyte dendricity and melanosome transfer to keratinocytes[J]. Journal of the European Academy of Dermatology and Venereology, 2022, 36: 3-11. |
[28] | Sridharan A, John Lim S Y, Wright G D, et al. Quantification of melanosome transfer using immunofluorescence microscopy and automated image analysis[J]. Epidermal Cells: Methods and Protocols, 2019: 55-65. |
[29] |
Shen T, Heo S I, Wang M H. Involvement of the p38 MAPK and ERK signaling pathway in the anti-melanogenic effect of methyl 3, 5-dicaffeoyl quinate in B16F10 mouse melanoma cells[J]. Chemico-biological Interactions, 2012, 199 (2) : 106-111.
doi: 10.1016/j.cbi.2012.06.004 |
[30] |
Castellano-Pellicena I, Morrison C G, Bell M, et al. Melanin distribution in human skin: influence of cytoskeletal, polarity, and centrosome-related machinery of stratum basale keratinocytes[J]. International Journal of Molecular Sciences, 2021, 22 (6) : 3143.
doi: 10.3390/ijms22063143 |
[31] |
Ramkumar A, Murthy D, Raja D A, et al. Classical autophagy proteins LC3B and ATG4B facilitate melanosome movement on cytoskeletal tracks[J]. Autophagy, 2017, 13 (8) : 1331-1347.
doi: 10.1080/15548627.2017.1327509 pmid: 28598240 |
[32] |
Hasanagic M, Waheed A, Eissenberg J C. Different pathways to the lysosome: sorting out alternatives[J]. International Review of Cell and Molecular Biology, 2015, 320: 75-101.
doi: 10.1016/bs.ircmb.2015.07.008 pmid: 26614872 |
[33] |
Ebanks J P, Koshoffer A, Wickett R R, et al. Hydrolytic enzymes of the interfollicular epidermis differ in expression and correlate with the phenotypic difference observed between light and dark skin[J]. The Journal of Dermatology, 2013, 40 (1) : 27-33.
doi: 10.1111/j.1346-8138.2012.01634.x pmid: 23088390 |
[34] |
Katsuyama Y, Taira N, Yoshioka M, et al. Disruption of melanosome transport in melanocytes treated with theophylline causes their degradation by autophagy[J]. Biochemical and Biophysical Research Communications, 2017, 485 (1) : 126-130.
doi: S0006-291X(17)30301-7 pmid: 28188783 |
[35] |
Sahani M H, Itakura E, Mizushima N. Expression of the autophagy substrate SQSTM1/p62 is restored during prolonged starvation depending on transcriptional upregulation and autophagy-derived amino acids[J]. Autophagy, 2014, 10 (3) : 431-441.
doi: 10.4161/auto.27344 pmid: 24394643 |
[36] |
Yang Z, Zeng B, Pan Y, et al. Autophagy participates in isoliquiritigenin-induced melanin degradation in human epidermal keratinocytes through PI3K/AKT/mTOR signaling[J]. Biomedicine & Pharmacotherapy, 2018, 97: 248-254.
doi: 10.1016/j.biopha.2017.10.070 |
[37] |
Murase D, Hachiya A, Takano K, et al. Autophagy has a significant role in determining skin color by regulating melanosome degradation in keratinocytes[J]. Journal of Investigative Dermatology, 2013, 133 (10) : 2416-2424.
doi: S0022-202X(15)35969-8 pmid: 23558403 |
[38] |
Kim E S, Jo Y K, Park S J, et al. ARP101 inhibits α-MSH-stimulated melanogenesis by regulation of autophagy in melanocytes[J]. FEBS Letters, 2013, 587 (24) : 3955-3960.
doi: 10.1016/j.febslet.2013.10.027 pmid: 24188823 |
[39] |
Kim E S, Chang H, Choi H, et al. Autophagy induced by resveratrol suppresses α-MSH-induced melanogenesis[J]. Experimental Dermatology, 2014, 23 (3) : 204-206.
doi: 10.1111/exd.12337 pmid: 24499351 |
[40] |
Yoshizaki N, Hashizume R, Masaki H. A polymethoxyflavone mixture extracted from orange peels, mainly containing nobiletin, 3, 3’, 4’, 5, 6, 7, 8-heptamethoxyflavone and tangeretin, suppresses melanogenesis through the acidification of cell organelles, including melanosomes[J]. Journal of Dermatological Science, 2017, 88 (1) : 78-84.
doi: S0923-1811(16)31097-0 pmid: 28629701 |
[41] |
Lee D U, Weon K Y, Nam D Y, et al. Skin protective effect of guava leaves against UV-induced melanogenesis via inhibition of ORAI1 channel and tyrosinase activity[J]. Experimental Dermatology, 2016, 25 (12) : 977-982.
doi: 10.1111/exd.2016.25.issue-12 |
[42] |
Katiyar S K, Elmets C A. Green tea polyphenolic antioxidants and skin photoprotection[J]. International Journal of Oncology, 2001, 18 (6) : 1307-1313.
pmid: 11351267 |
[43] |
Jiang L, Huang J, Lu J, et al. Ganoderma lucidum polysaccharide reduces melanogenesis by inhibiting the paracrine effects of keratinocytes and fibroblasts via IL-6/STAT3/FGF2 pathway[J]. Journal of Cellular Physiology, 2019, 234 (12) : 22799-22808.
doi: 10.1002/jcp.28844 pmid: 31115052 |
[44] |
Fu B, Li H, Wang X, et al. Isolation and identification of flavonoids in licorice and a study of their inhibitory effects on tyrosinase[J]. Journal of Agricultural and Food Chemistry, 2005, 53 (19) : 7408-7414.
doi: 10.1021/jf051258h pmid: 16159166 |
[45] |
Nishio T, Usami M, Awaji M, et al. Dual effects of acetylsalicylic acid on ERK signaling and Mitf transcription lead to inhibition of melanogenesis[J]. Molecular and Cellular Biochemistry, 2016, 412: 101-110.
doi: 10.1007/s11010-015-2613-x pmid: 26699907 |
[46] |
Migas P, Krauze-Baranowska M. The significance of arbutin and its derivatives in therapy and cosmetics[J]. Phytochem. Lett., 2015, 13: 35-40.
doi: 10.1016/j.phytol.2015.05.015 |
[47] |
Saeedi M, Eslamifar M, Khezri K. Kojic acid applications in cosmetic and pharmaceutical preparations[J]. Biomedicine & Pharmacotherapy, 2019, 110: 582-593.
doi: 10.1016/j.biopha.2018.12.006 |
[48] |
Chen J, Yu X, Huang Y. Inhibitory mechanisms of glabridin on tyrosinase[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2016, 168: 111-117.
doi: 10.1016/j.saa.2016.06.008 |
[49] |
Kang M, Park S H, Park S J, et al. p44/42 MAPK signaling is a prime target activated by phenylethyl resorcinol in its anti-melanogenic action[J]. Phytomedicine, 2019, 58: 152877.
doi: 10.1016/j.phymed.2019.152877 |
[50] |
Ortiz-Ruiz C V, Berna J, Tudela J, et al. Action of ellagic acid on the melanin biosynthesis pathway[J]. Journal of Dermatological Science, 2016, 82 (2) : 115-122.
doi: 10.1016/j.jdermsci.2016.02.004 pmid: 26899308 |
[51] |
Saba E, Kim S H, Lee Y Y, et al. Korean Red Ginseng extract ameliorates melanogenesis in humans and induces antiphotoaging effects in ultraviolet B-irradiated hairless mice[J]. Journal of Ginseng Research, 2020, 44 (3) : 496-505.
doi: 10.1016/j.jgr.2019.05.003 |
[52] |
Alam M B, Ahmed A, Motin M A, et al. Attenuation of melanogenesis by Nymphaea nouchali (Burm. f) flower extract through the regulation of cAMP/CREB/MAPKs/MITF and proteasomal degradation of tyrosinase[J]. Scientific Reports, 2018, 8 (1) : 13928.
doi: 10.1038/s41598-018-32303-7 |
[53] |
Kamei Y, Otsuka Y, Abe K. Comparison of the inhibitory effects of vitamin E analogues on melanogenesis in mouse B16 melanoma cells[J]. Cytotechnology, 2009, 59: 183-190.
doi: 10.1007/s10616-009-9207-y pmid: 19568943 |
[54] |
Phacharapiyangkul N, Thirapanmethee K, Sangiamsuntorn K, et al. The ethanol extract of Musa sapientum linn. Peel inhibits melanogenesis through akt signaling pathway[J]. Cosmetics, 2021, 8 (3) : 70.
doi: 10.3390/cosmetics8030070 |
[55] |
Kim B, Hwang J S, Kim H S. N-Nicotinoyl dopamine inhibits skin pigmentation by suppressing of melanosome transfer[J]. European Journal of Pharmacology, 2015, 769: 250-256.
doi: 10.1016/j.ejphar.2015.11.025 pmid: 26597116 |
[56] |
Paine C, Sharlow E, Liebel F, et al. An alternative approach to depigmentation by soybean extracts via inhibition of the PAR-2 pathway[J]. Journal of Investigative Dermatology, 2001, 116 (4) : 587-595.
pmid: 11286627 |
[57] |
Zeng B, Li K, Yang Z, et al. Isoimperatorin (ISO) reduces melanin content in keratinocytes via miR-3619/CSTB and miR-3619/CSTD axes[J]. Bioscience Biotechnology and Biochemistry, 2020, 84 (7) : 1436-1443.
doi: 10.1080/09168451.2020.1751581 |
[58] |
Usuki A, Ohashi A, Sato H, et al. The inhibitory effect of glycolic acid and lactic acid on melanin synthesis in melanoma cells[J]. Experimental Dermatology, 2003, 12: 43-50.
doi: 10.1034/j.1600-0625.12.s2.7.x |
[1] | 李宁, 李恩念, 陈红波, 程芳, 邹衡芳, 陈鸿鹏. 祛斑美白类化妆品功效成分的研究现状[J]. 日用化学工业(中英文), 2024, 54(1): 80-89. |
[2] | 刘峻辰, 孟宪瑶, 凌霄, 虞旦, 郭苗苗, 李丽. 蓝光导致皮肤色素沉着的发生机制研究[J]. 日用化学工业(中英文), 2024, 54(1): 90-94. |
[3] | 方承格, 马玲, 陈殿松, 常宽, 王靖. 头发与头皮护理的科学基础(Ⅶ)——头发灰白的原因及变黑的方法[J]. 日用化学工业(中英文), 2023, 53(7): 748-756. |
[4] | 韩雨迪, 金莉英, 孙熙浛, 林长青, 崔承弼. 人参红景天乳液的制作及其抗氧化、美白作用研究[J]. 日用化学工业(中英文), 2023, 53(6): 665-672. |
[5] | 严俊,王容,李泽桦,张丽媛,程巧鸳,颜琳琦. 祛斑美白类化妆品中6种功效成分的同时测定及使用情况分析[J]. 日用化学工业, 2022, 52(7): 791-796. |
[6] | 王冬冬,孙倩茹,王子文,方嘉璇,李萌,王昌涛. 葡萄籽发酵液抗衰老及美白功效研究[J]. 日用化学工业, 2022, 52(5): 545-552. |
[7] | 李子宜,刘彦,张召,吴惠勤. 制备一种包埋木瓜蛋白酶生物膜材料并应用于美白护肤品[J]. 日用化学工业, 2022, 52(3): 294-301. |
[8] | 金佳颖,陈露,王欣之,刘睿,吴皓. 珍珠灵芝复配物美白功效与机理初步研究[J]. 日用化学工业, 2022, 52(2): 166-171. |
[9] | 赵胜男,郭苗苗,蔡孟浩,洪民华,吕智,安法梁. 发酵莲花花瓣美白功效提升及作用机制研究[J]. 日用化学工业(中英文), 2022, 52(10): 1029-1039. |
[10] | 何瑞源,王硕,韦桂丽,龚小妹,吴佩莹,缪剑华. 壮药菲牛蛭提取物的美白作用及其机制初探[J]. 日用化学工业, 2022, 52(1): 35-43. |
[11] | 薛婉婷,李丽,董银卯,郭苗苗. 美白功效评价现状及发展趋势[J]. 日用化学工业, 2021, 51(9): 890-896. |
[12] | 任倩倩,吴华,金建明. 化妆品植物原料(IV)——抑制黑色素合成信号通路的植物美白原料的研究与开发[J]. 日用化学工业, 2021, 51(7): 590-597. |
[13] | 张兴琪,何敬愉,龚盛昭,刘林峰. 不同种类甘草成分及美白抗敏活性差异研究[J]. 日用化学工业, 2021, 51(7): 648-654. |
[14] | 付豪,吴迪,邴雪,张佳婵,王昌涛,李萌. 双向发酵提取燕麦β-葡聚糖的护肤功效研究[J]. 日用化学工业, 2021, 51(4): 324-330. |
[15] | 任倩倩,吴华,金建明. 化妆品植物原料(Ⅱ)——抑制酪氨酸酶活性的植物美白原料的研究与开发[J]. 日用化学工业, 2021, 51(3): 178-185. |
|