日用化学工业 ›› 2022, Vol. 52 ›› Issue (3): 309-315.doi: 10.3969/j.issn.1001-1803.2022.03.012
收稿日期:
2021-05-25
修回日期:
2022-02-25
出版日期:
2022-03-22
发布日期:
2022-03-21
通讯作者:
王晓炜,应国红
Liu Feng,Wang Xiaochong,Luo Jun,Wang Xiaowei(),Ying Guohong(
)
Received:
2021-05-25
Revised:
2022-02-25
Online:
2022-03-22
Published:
2022-03-21
Contact:
Xiaowei Wang,Guohong Ying
摘要:
国内外的化妆品菌落总数检验标准方法基本一致,采用的是经典的平板计数法,该方法操作简单,但完成微生物检验过程所需的时间较长。随着微生物学技术的发展,逐渐开发出了基于各种原理的微生物快速计数方法。通过对比平板计数法和各种微生物快速计数方法在微生物检测中的优缺点,综合考虑检验时间、检验准确性以及微生物快速计数方法在化妆品微生物检验中的可行性,得出荧光显微镜计数法和流式细胞仪计数法在化妆品菌落总数检验中具有潜在的应用价值。荧光显微镜计数法和流式细胞仪计数法通过直接计数样品中的微生物数量,检验时间较短;不需要进行微生物培养,无需考虑化妆品中的防腐剂对微生物生长的抑制性,检验准确性较高。将微生物快速计数方法纳入化妆品菌落总数检测标准体系中,作为现行标准的补充,在化妆品菌落总数检验中具有重要的意义。
中图分类号:
刘丰,王晓冲,罗俊,王晓炜,应国红. 微生物快速计数方法及其在化妆品检验中的应用分析[J]. 日用化学工业, 2022, 52(3): 309-315.
Liu Feng,Wang Xiaochong,Luo Jun,Wang Xiaowei,Ying Guohong. Application analysis of rapid microbial counting method in the detection of aerobic bacterial count in cosmetics[J]. China Surfactant Detergent & Cosmetics, 2022, 52(3): 309-315.
表1
不同国家化妆品菌落总数检验方法"
国家 | 培养基 | 培养条件 | 微生物指标限值/(CFU·g-1·mL-1) | 参考文献 | |
---|---|---|---|---|---|
温度 | 时间 | ||||
中国 | 卵磷脂吐温80营养琼脂培养基 | (36±1) ℃ | (48±2)h | 眼部、口唇和婴幼儿化妆品≤500;其他化妆品≤1 000 | [ |
美国 | 改良的卵磷脂琼脂培养基 (Modified Letheen agar) | (30±2) ℃ | 48 h | 眼部化妆品≤500;其他化妆品≤1 000 | [ |
欧盟 | 大豆酪蛋白消化琼脂培养基 | 30~35 ℃ | 3~5 d | 眼部、接触黏膜和3岁以下儿童化妆品≤ 100;其他化妆品≤1 000 | [ |
韩国 | 改良的卵磷脂琼脂培养基 | (30±2) ℃ | 48 h | 眼部和婴幼儿化妆品≤500;其他化妆品≤ 1 000 | [ |
ISO 21149 | 大豆酪蛋白消化琼脂培养基 | (32.5±2.5) ℃ | (72±6)h | 眼部、接触黏膜和3岁以下儿童化妆品≤ 100;其他化妆品≤1 000 | [ |
表2
微生物快速计数法与平板计数法的比较"
微生物计数方法 | 优点 | 局限性 | 是否适用于化妆品菌落总数测定 |
---|---|---|---|
平板计数法 | 准确性高;成本低 | 检测时间长 | 适用于化妆品菌落总数测定 |
荧光显微镜计数法 | 直接计数;准确性高;检测时间短 | 需要操作经验;容易产生误差 | |
流式细胞仪计数法 | 灵敏度高;准确性高;检测时间短 | 仪器昂贵;需要操作经验 | |
荧光计数法 | 操作简单;检测时间短 | 灵敏度低 | 适用于化妆品菌落总数测定,但是灵敏度低 |
TEMPO®系统计数法 | 操作简单; 准确性高 | 仪器昂贵; 需要进行微生物培养 | 在化妆品中有应用,但菌落总数测定结果与平板计数法的相关性较低 |
分子生物学计数法 | 灵敏度高;检测时间短 | 容易出现假阳性;不适用于含多种微生物类型的化妆品 | 不适用于化妆品菌落总数测定;特异性高,只能用于定性或定量检测某种微生物 |
酶联免疫吸附法 | 灵敏度高;检测时间相对短 | 不适用于含多种微生物类型的化妆品 | |
光学生物传感器法 | 操作简单;检测时间短 | 成本高;不适用于含多种微生物类型的化妆品 | |
质谱计数法 | 灵敏度高;检测时间短 | 仪器昂贵;不适用于含多种微生物类型的化妆品 | |
微生物代谢法 | 操作简单;检测时间短 | 成本高;需要进行微生物培养 | 防腐剂影响微生物生长,计数不准确,不适用于化妆品菌落总数测定 |
微流控系统计数法 | 准确性高;检测时间短 | 仪器昂贵;需要进行微生物培养 | |
MicroSnapTM计数法 | 操作简单;检测时间短 | 仪器昂贵;需要进行微生物培养 | |
SimplateTM计数法 | 操作简单;准确性高 | 仪器昂贵;需要进行微生物培养 |
[1] | Ministry of Health of the People’s Republic of China. Hygienic standard for cosmetics[S]. Beijing: Ministry of Health of the People’s Republic of China, 2015. |
[2] | US FDA (Food and Drug Administration). BAM: Microbiological methods for cosmetics chapter 23 [S/OL]. (2017-10-31). https://www.fda.gov/food/foodscienceresearch/laboratorymethods/ucm565586.htm. |
[3] | The Scientific Committee on Consumers Safety, Directorate-General for Health and Consumer Protection of the European Commission. The SSCS's Notes of guidance for the testing of cosmetic ingredients and their safety evaluation, 10th revision [EB/OL]. (2018-10-24, 25). https://ec.europa.eu/health/sites/health/files/scientific_committees/consumer_safety/docs/sccs_o_224.pdf. |
[4] | Ministry of Food and Drug Safety. Regulations on the Safety Standards, etc. of Cosmetics[S/OL]. (2016-04-22). https://www.mfds.go.kr/eng/index.do. |
[5] | International Organization for Standardization. Cosmetics-Microbiology-Enumeration and detection of aerobic mesophilic bacteria: ISO 22149: 2019[S]. Geneva: ISO, 2019. |
[6] |
Seo E Y, Ahn T S, Zo Y G. Agreement, precision, and accuracy of epifluorescence microscopy methods for enumeration of total bacterial numbers[J]. Applied and Environmental Microbiology, 2010, 76(6) : 1981.
doi: 10.1128/AEM.01724-09 |
[7] |
Mahnoud M A M, Zaki R S, Elhafeez H H A. An epifluorescence-based technique accelerates risk assessment of aggregated bacterial communities in carcass and environment[J]. Environmental Pollution, 2020, 260:113950.
doi: 10.1016/j.envpol.2020.113950 |
[8] |
Bach H J, Tomanova J, Schloter M, et al. Enumeration of total bacteria and bacteria with genes for proteolytic activity in pure cultures and in environmental samples by quantitative PCR mediated amplification[J]. Journal of Microbiological Methods, 2002, 49(3) : 235-245.
pmid: 11869788 |
[9] | Wolf-Baca M, Siedlecka A. Detection of pathogenic bacteria in hot tap water using the qPCR method: preliminary research[J]. Springer Nature Sciences, 2019, 1:840. |
[10] |
Hudecova I. Digital PCR analysis of circulating nucleic acids[J]. Clinical Biochemistry, 2015, 48(15) : 948-956.
doi: 10.1016/j.clinbiochem.2015.03.015 pmid: 25828047 |
[11] |
Pacocha N, Scheler O, Novwak M M, et al. Direct droplet digital PCR (dddPCR) for species specific, accurate and precise quantification of bacteria in mixed samples[J]. Anal Methods, 2019, 11(44) : 5730-5735.
doi: 10.1039/C9AY01874C |
[12] |
Huber D, Voithenberg L V V, Kaigala G V. Fluorescence in situ hybridization (FISH): History, limitations and what to expect from micro-scale FISH?[J]. Micro and Nano Engineering, 2018, 1:15-24.
doi: 10.1016/j.mne.2018.10.006 |
[13] |
Kuo J T, Chang L L, Yen C Y, et al. Development of fluorescence in situ hybridization as a rapid accurate method for detecting coliforms in water samples[J]. Biosensors, 2020, 11(1) : 8.
doi: 10.3390/bios11010008 |
[14] |
Pasulka A L, Howes A L, Kallet J G, et al. Visualization of probiotics via epifluorescence microscopy and fluorescence in situ hybridization (Fish)[J]. Journal of Microbiological Methods, 2021, 182:106151.
doi: 10.1016/j.mimet.2021.106151 pmid: 33592223 |
[15] |
Gaastra W. Enzyme-linked immunosorbant assay (ELISA)[J]. Methods in Molecular Biology, 1984, 1:349-355.
doi: 10.1385/0-89603-062-8:349 pmid: 20512705 |
[16] |
Shen Z Q, Hou N N, Jin M, et al. A novel enzyme-linked immunosorbent assay for detection of Escherichia coli O157: H7 using immunomagnetic and beacon gold nanoparticles[J]. Gut Pathogens, 2014, 6:14.
doi: 10.1186/1757-4749-6-14 |
[17] |
Lazcka O, Campo F J D, Munoz F X. Pathogen detection: A perspective of traditional methods and biosensors[J]. Biosensors and Bioelectronics, 2007, 22(7) : 1205-1217.
doi: 10.1016/j.bios.2006.06.036 |
[18] |
Higgins J A, Nasarabidi S, Karns J, et al. A handheld real time thermal cycler for bacterial pathogen detection[J]. Biosensors and Bioelectronics, 2003, 18(9) : 1115-1123.
pmid: 12788554 |
[19] | Oh B K, Lee W, Chun B S, et al. Surface plasmon resonance immunosensor for the detection of Yersinia enterocolitica[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2005, 257:369-374. |
[20] |
Wu H Q, Wu Q P, Zhang J M, et al. Study on rapid quantitative detection of total bacterial counts by the ATP-bioluminescence and application in probiotic products[J]. International Journal of Food Sciences and Technology, 2011, 46(5) : 921-929.
doi: 10.1111/ifs.2011.46.issue-5 |
[21] |
Fernandez P, Gabaldon J A, Periago M J. Detection and quantification of Alicyclobacillus acidoterrestric by electrical impedance in apple juice[J]. Food Microbiology, 2017, 68:34-40.
doi: 10.1016/j.fm.2017.06.016 |
[22] |
Nykyri J, Herrmann A M, Hakansson S. Isothermal microcalorimetry for thermal viable count of microorganisms in pure cultures and stabilized formulations[J]. BMC Microbiology, 2019, 19:65.
doi: 10.1186/s12866-019-1432-8 |
[23] |
Lehotová V, Petruláková M, Valík L’ubomír. Application of a new method to control microbial quality of foods based on the detection of oxygen consumption[J]. Acta Chimica Slovaca, 2016, 9(1) : 19-22.
doi: 10.1515/acs-2016-0004 |
[24] |
Ou F, McGoverin C, Swift S, et al. Absolute bacterial cell enumeration using flow cytometry[J]. Journal of Applied Microbiology, 2017, 123:464-477.
doi: 10.1111/jam.13508 pmid: 28600831 |
[25] |
Gunasekera T S, Attfield P V, Veal D A. A flow cytometry method for rapid detection and enumeration of total bacteria in milk[J]. Applied and Environmental Microbiology, 2000, 66(3) : 1228-1232.
doi: 10.1128/AEM.66.3.1228-1232.2000 pmid: 10698799 |
[26] |
Frossard A, Hammes F, Gessner M O. Flow cytometric assessment of bacterial abundance in soils, sediments and sludge[J]. Frontiers in Microbiology, 2016, 7:903.
doi: 10.3389/fmicb.2016.00903 pmid: 27379043 |
[27] |
Mao C P, Xue C F, Wang X Z, et al. Rapid quantification of pathogenic Salmonella typhimurium and total bacteria in eggs by nano-flow cytometry[J]. Talanta, 2020, 217:121020.
doi: 10.1016/j.talanta.2020.121020 |
[28] |
Amselem G, Guermonprez C, Drogue B, et al. Universal microfluidic platform for bioassays in anchored droplets[J]. Lab on a Chip, 2016, 16:4200.
doi: 10.1039/C6LC00968A |
[29] |
Scheler O, Pacocha N, Debski P R, et al. Optimized droplet digital CFU assay (ddCFU) provides precise quantification of bacteria over a dynamic range of 6 logs and beyond[J]. Lab on a Chip, 2017, 17:1980.
doi: 10.1039/c7lc00206h pmid: 28480460 |
[30] |
Kao Y T, Kaminski T S, Witod P, et al. Gravity-driven microfluidic assay for digital enumeration of bacteria and for antibiotic susceptibility testing[J]. Lab in a Chip, 2020, 20:54-63.
doi: 10.1039/C9LC00684B |
[31] |
Dogan U, Kasap E N, Sucularl F, et al. Multiplex enumeration of Escherichia coli and Salmonella enteritidis in a passive capillary microfluidic chip[J]. Analytical Methods, 2020, 12:3788-3796.
doi: 10.1039/D0AY01030H |
[32] |
Lin Y F, Hamme A T. Gold nanoparticle labeling based ICP-MS detection/measurement of bacteria, and their quantitative photothermal destruction[J]. Journal of Materials Chemistry B, 2015, 3:3573.
doi: 10.1039/C5TB00223K |
[33] |
London R, Schwedock J, Sage A, et al. An automated system for rapid non-destructive enumeration of growing microbes[J]. PLos One, 2010, 5(1) : e8609.
doi: 10.1371/journal.pone.0008609 |
[34] |
Yin Q Y, Nie M, Diwu Z J, et al. Establishment and application of a novel fluorescent-based analytical method for the rapid detection of viable bacteria in different samples[J]. Analytical Methods, 2020, 12:3933-3943.
doi: 10.1039/D0AY01247E |
[35] |
Ou F, McGoverin G, Swift S, et al. Near real-time enumeration of live and dead bacteria using a fibre-based spectroscopic device[J]. Scientific Reports, 2019, 9:4807.
doi: 10.1038/s41598-019-41221-1 |
[36] |
Meighan P, Smith M, Datta S, et al. The validation of the MicroSnap total for enumeration of total viable count in a variety of foods[J]. Journal of Aoac International, 2016, 99(3) : 686-694.
doi: 10.5740/jaoacint.16-0016 |
[37] |
Beuchat L R, Copeland F, Curiale M S, et al. Comparison of the SimplateTM total plate count method with PetrifilmTM, RedigelTM, and conventional pour plate methods for enumerating aerobic microorganisms in foods[J]. Journal of Food Protection, 1998, 61(1) : 14-18.
pmid: 9708246 |
[38] |
Jackson R W, Osborne K, Barnes G, et al. Multiregional evaluation of the SimplateTM heterotrophic plate count method compared to the standard plate count agar pour plate method in water[J]. Applied and Environmental Microbiology, 2000, 66(1) : 453-454.
doi: 10.1128/AEM.66.1.453-454.2000 pmid: 10618266 |
[39] |
Augusto N L, Beloti V, Barros A D A F, et al. Assessment of the efficiency of SimPlateTM total plate count color indicator (TPC CI) to quantify mesophilic aerobic microorganisms in pasteurized milk[J]. Brazilian Journal of Microbiology, 2002, 33(1) : 44-48.
doi: 10.1590/S1517-83822002000100009 |
[40] |
Cayer M P, Dussault N, Grandmont M J D, et al. Evaluation of the Tempo® system: improving the microbiological quality monitoring of human milk[J]. Frontiers in Pediatrics, 2020, 8:494.
doi: 10.3389/fped.2020.00494 |
[41] |
Yossa N, Smiley J, Huang M C, et al. Comparison of TEMPO BC with spiral plating methods for the enumeration of Bacillus cereus in cosmetic products either naturally preserved or preservd with phenoxyethanol[J]. Journal of AOAC International, 2019, 102(4) : 1080-1090.
doi: 10.5740/jaoacint.18-0375 |
[1] | 柳婧璇, 金建明, 吴华. 化妆品植物原料(Ⅶ)——抗真菌的植物原料的研究与开发[J]. 日用化学工业(中英文), 2024, 54(3): 259-266. |
[2] | 毕武, 潘小红, 涂晓琴, 殷帅, 孙辉. 基于网络药理学的化妆品原料粉防己抗敏作用机制分析[J]. 日用化学工业(中英文), 2024, 54(3): 305-312. |
[3] | 李瑶瑶. 异橙黄酮的抗衰老及抗氧化功效研究[J]. 日用化学工业(中英文), 2024, 54(3): 313-319. |
[4] | 许梦然, 赵华. 化妆品晒后修护功效评价方法研究进展[J]. 日用化学工业(中英文), 2024, 54(3): 329-336. |
[5] | 张丽媛, 颜琳琦, 程巧鸳, 戚绿叶, 王容, 黄柳倩. 高效液相色谱法测定化妆品中14种α-羟基酸和羟基酸酯[J]. 日用化学工业(中英文), 2024, 54(3): 353-359. |
[6] | 徐炜, 邹坡, 李长于, 杨铭, 鹿燕, 李慧良. 超高效液相色谱-串联质谱法测定化妆品中36种兴奋剂[J]. 日用化学工业(中英文), 2024, 54(3): 360-368. |
[7] | 周康夫, 支奕轩, 王飞飞, 尚亚卓. 新型乳化体系及其在化妆品中的应用(Ⅵ)——微乳液[J]. 日用化学工业(中英文), 2024, 54(2): 139-148. |
[8] | 谢珍, 黄微, 张劲松, 陈舒怀, 瞿霖吉, 匡荣. 化妆品眼刺激性评价中角膜损伤生物标志物研究[J]. 日用化学工业(中英文), 2024, 54(2): 161-167. |
[9] | 潘小红, 高梓琪, 陈真, 殷帅, 黄海萍, 胡斌. 我国化妆品产品稳定性研究与管理现状的探讨[J]. 日用化学工业(中英文), 2024, 54(2): 201-208. |
[10] | 芦丽, 方方, 冯有龙, 曹玲. 前体离子扫描超高效液相色谱-三重四级杆串联质谱法快速筛查化妆品中非法添加的磺胺类药物[J]. 日用化学工业(中英文), 2024, 54(2): 216-223. |
[11] | 王任, 吴鸳鸯, 乔佳, 颜琳琦, 陈岑, 张丽媛. 市售儿童化妆品中苯氧乙醇的测定及初步风险特征评估[J]. 日用化学工业(中英文), 2024, 54(2): 224-230. |
[12] | 鲁毅翔, 伍丽婷, 蒋济民, 陈海露, 黄璇. 化妆品中托萘酯、利拉萘酯的高效液相色谱定量及高效液相色谱-串联质谱确证[J]. 日用化学工业(中英文), 2024, 54(2): 231-238. |
[13] | 张丽媛, 程巧鸳, 陈岑, 李泽桦, 黄柳倩, 戚绿叶. 高效液相色谱法测定化妆品中3种α-羟基酸及其酯[J]. 日用化学工业(中英文), 2024, 54(1): 102-106. |
[14] | 陆林玲, 鲁辉, 闵春艳, 钱叶飞. UHPLC-MS/MS法测定面膜化妆品中甘草、人参和黄芩类功效成分[J]. 日用化学工业(中英文), 2024, 54(1): 107-113. |
[15] | 龙慧端, 鲁毅翔, 覃江兰, 张科明. 高效液相色谱法同时测定化妆品中24种香豆素类化合物及质谱确证[J]. 日用化学工业(中英文), 2024, 54(1): 114-122. |
|