日用化学工业 ›› 2021, Vol. 51 ›› Issue (7): 590-597.doi: 10.3969/j.issn.1001-1803.2021.07.002
收稿日期:
2021-06-28
出版日期:
2021-07-22
发布日期:
2021-07-23
通讯作者:
金建明
基金资助:
Ren Qianqian1,2,Wu Hua1,2,Jin Jianming1,2,*()
Received:
2021-06-28
Online:
2021-07-22
Published:
2021-07-23
Contact:
Jianming Jin
摘要:
人类的皮肤和头发的颜色取决于黑色素的数量、质量和分布。黑色素在保护皮肤免受各种环境的有害影响方面发挥巨大的作用。而黑色素过量合成会导致严重的皮肤问题。因此,研究黑色素生物合成的信号通路调控以及探究相关的经信号通路抑制黑色素合成的植物提取物具有非常重要的意义。本文综述了调控黑色素生物合成的信号通路和调控因子,包括α-MSH诱导的信号通路、PI3K/Akt信号通路、SCF/c-kit介导的MAPK信号通路、Wnt/β-catenin信号通路、NO/cGMP信号通路、以及细胞因子、转录因子PAX3和肝X受体。重点介绍通过调控各种信号通路抑制黑色素合成的植物提取物。这些植物提取物虽然通过不同的信号通路进行调控,但大多下调一种整合上游信号通路和调控下游基因的转录因子MITF的表达,进而降低酪氨酸酶(TYR)的表达,抑制细胞内黑色素的生物合成。
中图分类号:
任倩倩,吴华,金建明. 化妆品植物原料(IV)——抑制黑色素合成信号通路的植物美白原料的研究与开发[J]. 日用化学工业, 2021, 51(7): 590-597.
Ren Qianqian,Wu Hua,Jin Jianming. Botanical cosmetic ingredient (IV) Research and development of skin whitening ingredients from plant extracts with melanogenesis signaling pathway inhibiting effect[J]. China Surfactant Detergent & Cosmetics, 2021, 51(7): 590-597.
表1
抑制α-MSH诱导的黑色素合成的植物提取物"
抑制剂 | 来源 | 抑制机理 | 参考文献 |
---|---|---|---|
人参皂苷Rb1 | 人参 | α-MSH诱导的信号通路 | [7] |
人参皂苷Rh4 | 红参 | α-MSH诱导的信号通路 | [8, 9] |
白花丹素 | 白花菜属植物 | α-MSH诱导的信号通路 | [10, 11] |
芒果苷 | 山竹 | α-MSH诱导的信号通路 | [12] |
毛蕊花糖苷 | 桂花 | α-MSH诱导的信号通路 | [12] |
4-羟基-3-甲氧基肉桂醛 | 北美红杉属和栎属等 | α-MSH诱导的信号通路,cAMP/PKA信号通路 | [13] |
没药当归烯酮 | 重齿毛当归 | α-MSH诱导的信号通路,cAMP/PKA信号通路 | [13, 14] |
牡丹花瓣提取物 | 四川牡丹和丹凤 | α-MSH诱导的信号通路,cAMP/PKA信号通路 | [15] |
石榴提取物 | 石榴 | P38和PKA信号通路 | [16] |
马松子提取物 | 马松子 | ERK信号通路 | [17] |
香蕉皮提取物 | 香蕉 | P38信号通路 | [18, 19] |
表2
抑制黑色素生物合成PI3K/Akt信号通路的植物提取物"
抑制剂 | 来源 | 抑制机理 | 参考文献 |
---|---|---|---|
没食子酸 | PI3K/Akt,MEK/ERK和Wnt/β-catenin信号通路 | [21] | |
姜黄素 | 姜黄 | Akt/GSK3β,ERK和p38/MAPK信号通路 | [22] |
6-姜酚和8-姜酚 | 生姜 | PI3K和PKA/MAPK信号通路 | [23, 24] |
白藜芦醇 | PI3K/AKt和ERK1/2信号通路 | [25] | |
白桦脂酸 | 山葡萄 | PI3K/Akt 和ERK信号通路 | [26] |
橙皮苷 | 柑橘类 | Akt和ERK1/2信号通路 | [27] |
楔叶泽兰素 | 魁蒿 | Akt和ERK/P38信号通路 | [28] |
安石榴苷 | 石榴和胡芦巴 | ERK/Akt信号通路 | [29, 30] |
1-O-甲基呋喃果糖 | 五味子 | ERK/Akt信号通路 | [31] |
爪莲华提取物 | 爪莲华 | ERK/Akt信号通路 | [32] |
[1] |
Imokawa G, Ishida K. Inhibitors of intracellular signaling pathways that lead to stimulated epidermal pigmentation: perspective of anti-pigmenting agents[J]. International Journal of Molecular Sciences, 2014,15(5) : 8293-8315.
doi: 10.3390/ijms15058293 pmid: 24823877 |
[2] |
Yamaguchi Y, Brenner M, Hearing V J. The regulation of skin pigmentation[J]. Journal of Biological Chemistry, 2007,282(38) : 27557-27561.
pmid: 17635904 |
[3] |
Pillaiyar T, Manickam M, Jung S H. Recent development of signaling pathways inhibitors of melanogenesis[J]. Cellular Signalling, 2017,40(1) : 99-115.
doi: 10.1016/j.cellsig.2017.09.004 |
[4] | Liu J J, Fisher D E. Lighting a path to pigmentation: mechanisms of MITF induction by UV[J]. Pigment Cell & Melanoma Research, 2010,23(6) : 741-745. |
[5] |
Park H Y, Kosmadaki M, Yaar M, et al. Cellular mechanisms regulating human melanogenesis[J]. Cellular and Molecular Life Sciences, 2009,66(9) : 1493-1506.
doi: 10.1007/s00018-009-8703-8 pmid: 19153661 |
[6] |
Steingrímsson E, Copeland N G, JenkinsE N A. Melanocytes and the microphthalmia transcription factor network[J]. Annual Review of Genetics, 2004,38(3) : 365-411.
doi: 10.1146/annurev.genet.38.072902.092717 |
[7] |
Wang L, Lu A P, Yu Z L, et al. The melanogenesis-inhibitory effect and the percutaneous formulation of ginsenoside Rb1[J]. AAPS PharmSciTech, 2014,15(5) : 1252-1262.
doi: 10.1208/s12249-014-0138-3 pmid: 24895076 |
[8] |
Baek NI, Kim D S, Lee Y H, et al. Ginsenoside Rh4, a genuine dammarane glycoside from Korean red ginseng[J]. Planta Medica, 1996,62(1) : 86-87.
pmid: 8720394 |
[9] |
Jeong Y M, Oh W K, Tran T L, et al. Aglycone of Rh4 inhibits melanin synjournal in B16 melanoma cells: possible involvement of the protein kinase A pathway[J]. Bioscience, Biotechnology, and Biochemistry, 2013,77(1) : 119-125.
doi: 10.1271/bbb.120602 |
[10] |
Padhye S, Dandawate P, Yusufi M, et al. Perspectives on medicinal properties of plumbagin and its analogs[J]. Medicinal Research Reviews, 2012,32(6) : 1131-1158.
doi: 10.1002/med.20235 |
[11] |
Oh T I, Yun J M, Park E J, et al. Plumbagin suppresses α-MSH-induced melanogenesis in B16F10 mouse melanoma cells by inhibiting tyrosinase activity[J]. International Journal of Molecular Sciences, 2017,18(2) : 320.
doi: 10.3390/ijms18020320 |
[12] |
Lee K W, Ryu H W, Oh S S, et al. Depigmentation of α‐melanocyte‐stimulating hormone‐treated melanoma cells by β‐mangostin is mediated by selective autophagy[J]. Experimental Dermatology, 2017,26(7) : 585-591.
doi: 10.1111/exd.2017.26.issue-7 |
[13] |
Roh E, Jeong I Y, Shin H, et al. Downregulation of melanocyte-specific facultative melanogenesis by 4-hydroxy-3-methoxycinnamaldehyde acting as a cAMP antagonist[J]. Journal of Investigative Dermatology, 2014,134(2) : 551-553.
doi: 10.1038/jid.2013.341 |
[14] |
Wu J, Jones J M, Nguyen Huu X, et al. Crystal structures of RI alpha subunit of cyclic adenosine 5'-monophosphate (cAMP)-dependent protein kinase complexed with (Rp)-adenosine 3',5'-cyclic monophosphothioate and (Sp)-adenosine 3',5'-cyclic monophosphothioate, the phosphothioate analogues of cAMP[J]. Biochemistry, 2004,43(21) : 6620-6629.
doi: 10.1021/bi0302503 |
[15] | L G, Z Y, L W, et al. Flower extracts from Paeonia decomposita and Paeonia ostii inhibit melanin synjournal via cAMP-CREB-associated melanogenesis signaling pathways in murine B16 melanoma cells[J]. Journal of Food Biochemistry, 2019,43(4) : 1-8. |
[16] |
Kang S J, Choi B R, Lee E K, et al. Inhibitory effect of dried pomegranate concentration powder on melanogenesis in B16F10 melanoma cells; involvement of p38 and PKA signaling pathways[J]. International Journal of Molecular Sciences, 2015,16(10) : 24219-24242.
doi: 10.3390/ijms161024219 pmid: 26473849 |
[17] |
Yuan X H, Tian Y D, Oh J H, et al. Melochia corchorifolia extract inhibits melanogenesis in B16F10 mouse melanoma cells via activation of the ERK signaling[J]. Journal of Cosmetic Dermatology, 2020,19(9) : 2421-2427.
doi: 10.1111/jocd.v19.9 |
[18] |
Phacharapiyangkul N, Thirapanmethee K, Sa Ngiamsuntorn K, et al. Effect of Sucrier banana peel extracts on inhibition of melanogenesis through the ERK signaling pathway[J]. International Journal of Medical Sciences, 2019,16(4) : 602.
doi: 10.7150/ijms.32137 pmid: 31171912 |
[19] |
Li L, Liu Y, Xue Y, et al. Preparation of a ferulic acid-phospholipid complex to improve solubility, dissolution, and B16F10 cellular melanogenesis inhibition activity[J]. Chemistry Central Journal, 2017,11(1) : 26.
doi: 10.1186/s13065-017-0254-8 pmid: 29086815 |
[20] |
Ploper D, De Robertis E M. The MITF family of transcription factors: Role in endolysosomal biogenesis, Wnt signaling, and oncogenesis[J]. Pharmacological Research, 2015,99(3) : 36-43.
doi: 10.1016/j.phrs.2015.04.006 |
[21] |
Su T R, Lin J J, Tsai C C, et al. Inhibition of melanogenesis by gallic acid: Possible involvement of the PI3K/Akt, MEK/ERK and Wnt/β-catenin signaling pathways in B16F10 cells[J]. International Journal of Molecular Sciences, 2013,14(10) : 20443-20458.
doi: 10.3390/ijms141020443 |
[22] |
Tu C X, Lin M, Lu S S, et al. Curcumin inhibits melanogenesis in human melanocytes[J]. Phytotherapy Research, 2012,26(2) : 174-179.
doi: 10.1002/ptr.3517 |
[23] |
Huang H C, Chiu S H, Chang T M. Inhibitory effect of [6]-gingerol on melanogenesis in B16F10 melanoma cells and a possible mechanism of action[J]. Bioscience, Biotechnology, and Biochemistry, 2011,75(6) : 1067-1072.
doi: 10.1271/bbb.100851 |
[24] |
Huang H C, Chiu Y C, Wu C Y, et al. [8]-Gingerol inhibits melanogenesis in murine melanoma cells through down-regulation of the MAPK and PKA signal pathways[J]. Biochemical and Biophysical Research Communications, 2013,438(2) : 375-381.
doi: 10.1016/j.bbrc.2013.07.079 |
[25] | Eo S H, Kim S J. Resveratrol-mediated inhibition of cyclooxygenase-2 in melanocytes suppresses melanogenesis through extracellular signal-regulated kinase 1/2 and phosphoinositide 3-kinase/Akt signalling[J]. European Journal of Pharmacology, 2019,860(1) : 1-11. |
[26] |
Jin K S, Oh Y N, Hyun S K, et al. Betulinic acid isolated from Vitis amurensis root inhibits 3-isobutyl-1-methylxanthine induced melanogenesis via the regulation of MEK/ERK and PI3K/Akt pathways in B16F10 cells[J]. Food and Chemical Toxicology, 2014,68(1) : 38-43.
doi: 10.1016/j.fct.2014.03.001 |
[27] |
Lee H J, Lee W J, Chang S E, et al. Hesperidin, a popular antioxidant inhibits melanogenesis via Erk1/2 mediated MITF degradation[J]. International Journal of Molecular Sciences, 2015,16(8) : 18384-18395.
doi: 10.3390/ijms160818384 |
[28] |
Ko H H, Chang Y C, Tsai M H, et al. Eupafolin, a skin whitening flavonoid isolated fromPhyla nodiflora, downregulated melanogenesis: Role of MAPK and Akt pathways[J]. Journal of Ethnopharmacology, 2014,151(1) : 386-393.
doi: 10.1016/j.jep.2013.10.054 |
[29] |
Kim D S, Hwang E S, Lee J E, et al. Sphingosine-1-phosphate decreases melanin synjournal via sustained ERK activation and subsequent MITF degradation[J]. Journal of Cell Science, 2003,116(9) : 1699-1706.
doi: 10.1242/jcs.00366 |
[30] |
Iwatake M, Okamoto K, Tanaka T, et al. Punicalagin attenuates osteoclast differentiation by impairing NFATc1 expression and blocking Akt-and JNK-dependent pathways[J]. Molecular and Cellular Biochemistry, 2015,407(2) : 161-172.
doi: 10.1007/s11010-015-2466-3 |
[31] |
Oh E Y, Jang J Y, Choi Y H, et al. Inhibitory effects of 1-O-methyl-fructofuranose from Schisandra chinensis fruit on melanogenesis in B16F0 melanoma cells[J]. Journal of Ethnopharmacology, 2010,132(1) : 219-224.
doi: 10.1016/j.jep.2010.08.010 |
[32] |
Im D S, Lee J M, Lee J, et al. Inhibition of collagenase and melanogenesis by ethanol extracts ofOrostachys japonicus A. Berger: possible involvement of Erk and Akt signaling pathways in melanoma cells[J]. Acta Biochimica et Biophysica Sinica, 2017,49(10) : 945-953.
doi: 10.1093/abbs/gmx090 |
[33] |
Matsunaga J, Sinha D, Solano F, et al. Macrophage migration inhibitory factor (MIF)—its role in catecholamine metabolism[J]. Cellular and Molecular Biology, 1999,45(7) : 1035-1040.
pmid: 10644007 |
[34] |
Seiberg M, Paine C, Sharlow E, et al. Inhibition of melanosome transfer results in skin lightening[J]. Journal of Investigative Dermatology, 2000,115(2) : 162-167.
pmid: 10951231 |
[35] |
Stanisz H, Stark A, Kilch T, et al. ORAI1 Ca(2+) channels control endothelin-1-induced mitogenesis and melanogenesis in primary human melanocytes[J]. Journal of Investigative Dermatology, 2012,132(5) : 1443-1451.
doi: 10.1038/jid.2011.478 |
[36] |
Kim H J, Yonezawa T, Teruya T, et al. Nobiletin, a polymethoxy flavonoid, reduced endothelin‐1 plus SCF‐induced pigmentation in human melanocytes[J]. Photochemistry and Photobiology, 2015,91(2) : 379-386.
doi: 10.1111/php.2015.91.issue-2 |
[37] |
Imokawa G, Ishida K. Inhibitors of intracellular signaling pathways that lead to stimulated epidermal pigmentation: perspective of anti-pigmenting agents[J]. International Journal of Molecular Sciences, 2014,15(5) : 8293-8315.
doi: 10.3390/ijms15058293 pmid: 24823877 |
[38] |
Packer L, Rimbach G, Virgili F. Antioxidant activity and biologic properties of a procyanidin-rich extract from pine (Pinus maritima) bark, pycnogenol[J]. Free Radical Biology and Medicine, 1999,27(6) : 704-724.
doi: 10.1016/S0891-5849(99)00090-8 |
[39] |
Shimada T, Tokuharad D, TSUBATA M, et al. Flavangenol (pine bark extract) and its major component procyanidin B1 enhance fatty acid oxidation in fat-loaded models[J]. European Journal of Pharmacology, 2012,677(1-3):147-153.
doi: 10.1016/j.ejphar.2011.12.034 |
[40] |
Ohkita M, Kiso Y, Matsumura Y. Pharmacology in health foods: improvement of vascular endothelial function by French maritime pine bark extract (Flavangenol)[J]. Journal of Pharmacological Sciences, 2011,115(4) : 461-465.
doi: 10.1254/jphs.10R37FM |
[41] |
Larue L, Delmas V. The Wnt/β-catenin pathway in melanoma[J]. Frontiers in Bioscience-Landmark, 2006,11(1) : 733-742.
doi: 10.2741/1831 |
[42] |
Fujita T, Inoue K, Yamamoto S, et al. Fungal metabolites. Part 11. A potent immunosuppressive activity found in Isaria sinclairii metabolite[J]. The Journal of Antibiotics, 1994,47(2) : 208-215.
doi: 10.7164/antibiotics.47.208 |
[43] |
Zhu P Y, Yin W H, Wang M R, et al. Andrographolide suppresses melanin synjournal through Akt/GSK3β/β-catenin signal pathway[J]. Journal of Dermatological Science, 2015,79(1) : 74-83.
doi: 10.1016/j.jdermsci.2015.03.013 |
[44] |
Dong Y, Wang H, Cao J, et al. Nitric oxide enhances melanogenesis of alpaca skin melanocytes in vitro by activating the MITF phosphorylation[J]. Molecular and Cellular Biochemistry, 2011,352(1/2):255-260.
doi: 10.1007/s11010-011-0761-1 |
[45] |
Liu J, Xu X, Jiang R, et al. Vanillic acid in Panax ginseng root extract inhibits melanogenesis in B16F10 cells via inhibition of the NO/PKG signaling pathway[J]. Bioscience, Biotechnology, and Biochemistry, 2019,83(7) : 1205-1215.
doi: 10.1080/09168451.2019.1606694 |
[46] |
Choi H, Han J. IL-4 inhibits the melanogenesis of normal human melanocytes through the JAK2-STAT6 signaling pathway[J]. Journal of Investigative Dermatology, 2013,133(2) : 528-536.
doi: 10.1038/jid.2012.331 |
[47] |
Han J, Lee E, Kim E, et al. Role of epidermal γ δ T‐cell‐derived interleukin 13 in the skin‐whitening effect of ginsenoside F 1[J]. Experimental Dermatology, 2014,23(11) : 860-862.
doi: 10.1111/exd.12531 |
[48] |
Bondurand N, Pingault V, Goerich D E, et al. Interaction among sox10, pax3 and mitf, three genes altered in Waardenburg syndrome[J]. Human Molecular Genetics, 2000,9(13) : 1907-1917.
pmid: 10942418 |
[49] |
Gu W J, Ma H J, Zhao G, et al. Additive effect of heat on the UVB-induced tyrosinase activation and melanogenesis via ERK/p38/MITF pathway in human epidermal melanocytes[J]. Archives of Dermatological Research, 2014,306(6) : 583-590.
doi: 10.1007/s00403-014-1461-y |
[50] |
Russell L E, Harrison W J, Bahta A W, et al. Characterization of liver X receptor expression and function in human skin and the pilosebaceous unit[J]. Experimental Dermatology, 2007,16(10) : 844-852.
pmid: 17845217 |
[51] |
Kömü Ves L G, Schmuth M, Fowler A J, et al. Oxysterol stimulation of epidermal differentiation is mediated by liver X receptor-beta in murine epidermis[J]. The Journal of Investigative Dermatology, 2002,118(1) : 25-34.
doi: 10.1046/j.0022-202x.2001.01628.x |
[52] |
Kumar R, Parsad D, Kaul D, et al. Liver X receptor expression in human melanocytes, does it have a role in the pathogenesis of vitiligo?[J]. Experimental Dermatology, 2010,19(1) : 62-64.
doi: 10.1111/exd.2009.19.issue-1 |
[53] |
Lee C S, Park M, Han J, et al. Liver X receptor activation inhibits melanogenesis through the acceleration of ERK-mediated MITF degradation[J]. Journal of Investigative Dermatology, 2013,133(4) : 1063-1071.
doi: 10.1038/jid.2012.409 |
[54] |
Kim M O, Park Y S, Nho Y H, et al. Emodin isolated from Polygoni Multiflori Ramulus inhibits melanogenesis through the liver X receptor-mediated pathway[J]. Chemico-Biological Interactions, 2016,250(1) : 78-84.
doi: 10.1016/j.cbi.2016.03.014 |
[55] |
Kwon K J, Bae S, Kim K, et al. Asiaticoside, a component of Centella asiatica, inhibits melanogenesis in B16F10 mouse melanoma[J]. Molecular Medicine Reports, 2014,10(1) : 503-507.
doi: 10.3892/mmr.2014.2159 |
[56] |
Chiang H M, Chien Y C, Wu C H, et al. Hydroalcoholic extract of Rhodiola rosea L.(Crassulaceae) and its hydrolysate inhibit melanogenesis in B16F0 cells by regulating the CREB/MITF/tyrosinase pathway[J]. Food and Chemical Toxicology, 2014,65(1) : 129-139.
doi: 10.1016/j.fct.2013.12.032 |
[57] | Hu S, Zheng Z, Chen F, et al. Activity and mechanism of natural resorcinol-type phenolics from the twigs ofCurdrania tricuspidata as skin whitening agents[J]. IFSCC Magazine, 2014,17(1) : 3-5. |
[58] |
Yamahara M, Sugimura K, Kumagai A, et al. Callicarpa longissima extract, carnosol-rich, potently inhibits melanogenesis in B16F10 melanoma cells[J]. Journal of Natural Medicines, 2016,70(1) : 28-35.
doi: 10.1007/s11418-015-0933-5 pmid: 26267810 |
[59] |
Kim M J, Kim D S, Yoon H S, et al. Melanogenesis inhibitory activity of Korean Undaria pinnatifida in mouse B16 melanoma cells[J]. Interdisciplinary Toxicology, 2014,7(2) : 89-92.
doi: 10.2478/intox-2014-0012 |
[60] |
Wang L, Cui Y R, Yang H W, et al. A mixture of seaweed extracts and glycosaminoglycans from sea squirts inhibits α-MSH-induced melanogenesis in B16F10 melanoma cells[J]. Fisheries and Aquatic Sciences, 2019,22(1) : 11.
doi: 10.1186/s41240-019-0126-3 |
[61] |
Serre C, Busuttil V, Boyyo J M. Intrinsic and extrinsic regulation of human skin melanogenesis and pigmentation[J]. International Journal of Cosmetic Science, 2018,40(4) : 328-347.
doi: 10.1111/ics.12466 pmid: 29752874 |
[1] | 柳婧璇, 金建明, 吴华. 化妆品植物原料(Ⅶ)——抗真菌的植物原料的研究与开发[J]. 日用化学工业(中英文), 2024, 54(3): 259-266. |
[2] | 张艳萍, 周宗洲, 黄婉锋, 陈艺华, 张敏, 何作民. UPLC-MS/MS法测定化妆品常用植物提取物中16种香豆素类化合物[J]. 日用化学工业(中英文), 2023, 53(2): 226-232. |
[3] | 孙锦月, 武楠楠, 张瑜, 何华名, 何聪芬. 基于网络药理学探讨罗勒抗炎抗菌分子机制[J]. 日用化学工业(中英文), 2023, 53(1): 54-61. |
[4] | 吴亚妮,吕晓帆,王莹,唐寅. 苦水玫瑰精油对B16细胞中黑色素合成的影响及机制研究[J]. 日用化学工业, 2022, 52(3): 278-286. |
[5] | 任倩倩,孙旭,吴华,金建明. 化妆品植物原料(V)——抗氧化活性的植物原料的研究与开发[J]. 日用化学工业, 2021, 51(9): 817-824. |
[6] | 车飙,高艳,肖蕾,黄金莲. 口腔溃疡相关因子的研究进展[J]. 日用化学工业, 2021, 51(9): 881-889. |
[7] | 王强,尚佳伟,陆优,陆荣柱. 植物提取物防脱生发机制研究进展[J]. 日用化学工业, 2021, 51(9): 897-902. |
[8] | 张雨彤,宋阳,吴华,金建明. 化妆品植物原料(Ⅲ)——在保湿化妆品中的研究与开发[J]. 日用化学工业, 2021, 51(5): 383-389. |
[9] | 任倩倩,吴华,金建明. 化妆品植物原料(Ⅱ)——抑制酪氨酸酶活性的植物美白原料的研究与开发[J]. 日用化学工业, 2021, 51(3): 178-185. |
[10] | 张雨彤,魏梦雅,任倩倩,吴华,金建明. 化妆品植物原料(VI)——在抗衰老化妆品中的研究与开发[J]. 日用化学工业, 2021, 51(11): 1052-1059. |
[11] | 任倩倩,孙旭,李楠,吴华,金建明. 化妆品植物原料(I)——在防晒化妆品中的研究与开发[J]. 日用化学工业, 2021, 51(1): 10-16. |
[12] | 郑曦,陈智多,张德蒙,秦益民,易彩霞,黄啸. 海藻酸钠对酪氨酸酶的抑制作用[J]. 日用化学工业, 2019, 49(6): 388-392. |
[13] | 郝谜谜, 王艳, 刘园园, 鲍炎, 李红艳, 郑琳. 苯乙基间苯二酚抑制黑色素形成的机理研究[J]. 日用化学工业, 2018, 48(5): 293-298. |
[14] | 赵华, 王楠. 化妆品功效评价(Ⅲ)——美白功效宣称的科学支持[J]. 日用化学工业, 2018, 48(3): 129-133. |
[15] | 万禁禁, 刘瑞学, 冷群英, 陈效芳. 一种美白霜的研制及其美白功效评价[J]. 日用化学工业, 2017, 47(9): 512-516. |
|