日用化学工业 ›› 2021, Vol. 51 ›› Issue (2): 89-97.doi: 10.3969/j.issn.1001-1803.2021.02.002
陈凤凤(),陶胜男,龚穗菁,张圣伟,孙亚娟,杨成,李云兴(
)
收稿日期:
2020-11-25
出版日期:
2021-02-22
发布日期:
2021-02-22
通讯作者:
李云兴
作者简介:
陈凤凤(1984-),江苏人,实验师,电话:13382887218,E-mail: 基金资助:
CHEN Feng-feng(),TAO Sheng-nan,GONG Sui-jing,ZHANG Sheng-wei,SUN Ya-juan,YANG Cheng,LI Yun-xing(
)
Received:
2020-11-25
Online:
2021-02-22
Published:
2021-02-22
Contact:
Yun-xing LI
摘要:
随着对化妆品生产满足安全和可持续发展理念要求的提高,开发“无表面活性剂”的乳液类化妆品已经引起了消费者越来越多的关注。胶体颗粒稳定的乳液被称为皮克林乳液,其拥有稳定性高、生物相容性好、乳化过程发泡少和对环境无污染等诸多优点;尤其是植物来源的胶体颗粒稳定的皮克林乳液,在化妆品中展现出巨大的商品化潜力。文章首先总结了皮克林乳液的稳定机理和稳定性的影响因素,进而论述了皮克林乳液在化妆品中的应用优势,从而为进一步拓展皮克林乳液在化妆品中的实际应用提供参考。
中图分类号:
陈凤凤,陶胜男,龚穗菁,张圣伟,孙亚娟,杨成,李云兴. 化妆品乳液及乳化新技术(I)——皮克林乳液的基本原理及其在化妆品中的应用[J]. 日用化学工业, 2021, 51(2): 89-97.
CHEN Feng-feng,TAO Sheng-nan,GONG Sui-jing,ZHANG Sheng-wei,SUN Ya-juan,YANG Cheng,LI Yun-xing. Cosmetic emulsions and new technologies of emulsification (I) Fundamental principles of Pickering emulsions and their applications in cosmetics[J]. China Surfactant Detergent & Cosmetics, 2021, 51(2): 89-97.
[1] | Chevalier Y, Bolzinger M-A. Emulsions stabilized with solid nanoparticles: Pickering emulsions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013,439:23-34. |
[2] | Ramsdem W. Separation of solids in the surface-layers of solutions and ‘suspensions’[J]. Proceedings of the Royal Society of London, 1903,72:156-164. |
[3] | Pickering, Umfreville S. CXCVI.—Emulsions[J]. Journal of the Chemical Society, Transactions, 1907,91:2001-2021. |
[4] |
Yang Y Q, Fang Z W, Chen X, et al. An overview of Pickering emulsions: solid-particle materials, classification, morphology, and applications[J]. Frontiers in Pharmacology, 2017,8:287.
doi: 10.3389/fphar.2017.00287 pmid: 28588490 |
[5] |
Linke C, Drusch S. Pickering emulsions in foods - opportunities and limitations[J]. Critical Reviews in Food Science and Nutrition, 2018,58(12) : 1971-1985.
pmid: 28414514 |
[6] | Xiao J, Li Y Q, Huang Q R. Recent advances on food-grade particles stabilized Pickering emulsions: Fabrication, characterization and research trends[J]. Trends in Food Science and Technology, 2016,55:48-60. |
[7] | Binks B P, Horozov T S. Colloidal particles at liquid interfaces: an introduction [M]. England: Cambridge University Press, 2006: 1-74. |
[8] | Thieme J, Abend S, Lagaly G. Aggregation in Pickering emulsions[J]. Colloid and Polymer Science, 1999,277(2/3) : 257-260. |
[9] | Lu J, Tian X X, Jin Y L, et al. A pH responsive Pickering emulsion stabilized by fibrous palygorskite particles[J]. Applied Clay Science, 2014,102:113-120. |
[10] |
Hunter T N, Pugh R J, Franks G V, et al. The role of particles in stabilising foams and emulsions[J]. Advances in Colloid and Interface Science, 2008,137(2) : 57-81.
pmid: 17904510 |
[11] |
Costa A L R, Gomes A, Cunha R L. One-step ultrasound producing O/W emulsions stabilized by chitosan particles[J]. Food Research International, 2018,107:717-725.
pmid: 29580539 |
[12] |
Lee M N, Chan H K, Mohraz A. Characteristics of Pickering emulsion gels formed by droplet bridging[J]. Langmuir, 2012,28(6) : 3085-3091.
pmid: 22008060 |
[13] |
Wu J, Ma G H. Recent studies of Pickering emulsions: particles make the difference[J]. Small, 2016,12(34) : 4633-4648.
doi: 10.1002/smll.201600877 pmid: 27337222 |
[14] | Binks B P, Lumsdon S O. Pickering emulsions stabilized by monodisperse latex particles: effects of particle size[J]. Langmuir, 2001,17(15) : 4540-4547. |
[15] |
Ge S J, Xiong L, Li M, et al. Characterizations of Pickering emulsions stabilized by starch nanoparticles: influence of starch variety and particle size[J]. Food Chemistry, 2017,234:339-347.
doi: 10.1016/j.foodchem.2017.04.150 pmid: 28551245 |
[16] |
Binks B P, Clint J H. Solid wettability from surface energy components: relevance to Pickering emulsions[J]. Langmuir, 2002,18(4) : 1270-1273.
doi: 10.1021/la011420k |
[17] | Wu F J, Deng J J, Hu L Y, et al. Investigation of the stability in Pickering emulsions preparation with commercial cosmetic ingredients[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020,602:125082. |
[18] | Wang H Z, Singh V, Behrens S H. Image charge effects on the formation of Pickering emulsions[J]. Journal of Physical Chemistry Letters, 2012,3(20) : 2986-2990. |
[19] |
Nallamilli T, Binks B P, Mani E, et al. Stabilization of Pickering emulsions with oppositely charged latex particles: influence of various parameters and particle arrangement around droplets[J]. Langmuir, 2015,31(41) : 11200-11208.
pmid: 26411316 |
[20] | Pushpam S D C, Basavaraj M G, Mani E. Pickering emulsions stabilized by oppositely charged colloids: stability and pattern formation[J]. Physical Review E, 2015,92(5) : 52314. |
[21] | Nan F F, Wu J, Qi F, et al. Uniform chitosan-coated alginate particles as emulsifiers for preparation of stable Pickering emulsions with stimulus dependence[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014,456:246-252. |
[22] | Binks B P, Lumsdon S O. Effects of oil type and aqueous phase composition on oil-water mixtures containing particles of intermediate hydrophobicity[J]. Physical Chemistry Chemical Physics, 2000,2(13) : 2959-2967. |
[23] |
Read E S, Fujii S, Amalvy J I, et al. Effect of varying the oil phase on the behavior of pH-responsive latex-based emulsifiers: demulsification versus transitional phase inversion[J]. Langmuir, 2004,20(18) : 7422-7429.
doi: 10.1021/la049431b pmid: 15323485 |
[24] | Dai L, Zhan X Y, Wei Y, et al. Composite zein-propylene glycol alginate particles prepared using solvent evaporation: characterization and application as Pickering emulsion stabilizers[J]. Food Hydrocolloids, 2018,85:281-290. |
[25] | Xiao J, Wang X A, Gonzalez A J P, et al. Kafirin nanoparticles-stabilized Pickering emulsions: microstructure and rheological behavior[J]. Food Hydrocolloids, 2016,54:30-39. |
[26] | Lissant K J, Peace B W, Wu S H, et al. Structure of high-internal-phase-ratio emulsions[J]. Journal of Colloid and Interface Science, 1974,47(2) : 416-423. |
[27] | Wei Z H, Huang Q R. Development of high internal phase Pickering emulsions stabilised by ovotransferrin-gum arabic particles as curcumin delivery vehicles[J]. International Journal of Food Science & Technology, 2020,55(5) : 1891-1899. |
[28] | Tang M Y, Wu T, Xu X Y, et al. Factors that affect the stability, type and morphology of Pickering emulsion stabilized by silver nanoparticles/graphene oxide nanocomposites[J]. Materials Research Bulletin, 2014,60:118-129. |
[29] | de Folter J W J, van Ruijven M W M, Velikov K P. Oil-in-water Pickering emulsions stabilized by colloidal particles from the water-insoluble protein zein[J]. Soft Matter, 2012,8(25) : 6807-6815. |
[30] | Binks B P, Lumsdon S O. Stability of oil-in-water emulsions stabilised by silica particles[J]. Physical Chemistry Chemical Physics, 1999,1(12) : 3007-3016. |
[31] | Ashby N P, Binks B P. Pickering emulsions stabilised by laponite clay particles[J]. Physical Chemistry Chemical Physics, 2000,2(24) : 5640-5646. |
[32] |
Yang F, Liu S Y, Xu J, et al. Pickering emulsions stabilized solely by layered double hydroxides particles: the effect of salt on emulsion formation and stability[J]. Journal of Colloid and Interface Science, 2006,302(1) : 159-169.
pmid: 16842811 |
[33] | Xi Y K, Liu B, Jiang H, et al. Sodium caseinate as a particulate emulsifier for making indefinitely recycled pH-responsive emulsions[J]. Chemical Science, 2020,11(15) : 3797-3803. |
[34] |
Tao S N, Jiang H, Wang R J, et al. Ultra-stable Pickering emulsion stabilized by a natural particle bilayer[J]. Chemical Communications, 2020,56(90) : 14011-14014.
pmid: 33095226 |
[35] | Ali A, Yilmaz EMS. A novel technology for personal care emulsions[J]. SOFW Journal, 2015,141:11-15. |
[36] | Stiller S, Gers-Barlag H, Lergenmueller M, et al. Investigation of the stability in emulsions stabilized with different surface modified titanium dioxides[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004,232(2/3):261-267. |
[37] | Marto J, Gouveia L F, Chiari B G, et al. The green generation of sunscreens: using coffee industrial sub-products[J]. Industrial Crops and Products, 2016,80:93-100. |
[38] |
Zembyla M, Murray B S, Radford S J, et al. Water-in-oil Pickering emulsions stabilized by an interfacial complex of water-insoluble polyphenol crystals and protein[J]. Journal of Colloid and Interface Science, 2019,548:88-99.
doi: 10.1016/j.jcis.2019.04.010 pmid: 30981966 |
[39] |
Zembyla M, Lazidis A, Murray B S, et al. Water-in-oil Pickering emulsions stabilized by synergistic particle-particle interactions[J]. Langmuir, 2019,35(40) : 13078-13089.
doi: 10.1021/acs.langmuir.9b02026 pmid: 31525933 |
[40] |
Wei Y, Yu Z P, Lin K S, et al. Fabrication, physicochemical stability, and microstructure of coenzyme Q10 Pickering emulsions stabilized by resveratrol-loaded composite nanoparticles[J]. J Agric Food Chem, 2020,68(5) : 1405-1418.
doi: 10.1021/acs.jafc.9b06678 pmid: 31940190 |
[41] | Dai L, Li Y T, Kong F G, et al. Lignin-based nanoparticles stabilized Pickering emulsion for stability improvement and thermal-controlled release of trans-resveratrol[J]. ACS Sustainable Chemistry & Engineering, 2019,7(15) : 13497-13504. |
[42] | Xiao J, Lo C, Huang Q R. Kafirin nanoparticle-stabilized Pickering emulsions as oral delivery vehicles: physicochemical stability and in vitro digestion profile[J]. Journal of Agrcultural and Food Chemistry, 2015,63(47) : 10263-10270. |
[43] | Vian A, Favrod V, Amstad E. Reducing the shell thickness of double emulsions using microfluidics[J]. Microfluidics and Nanofluidics, 2016,20(12) : 159. |
[44] |
Jiang Y, Wang D, Li F, et al. Cinnamon essential oil Pickering emulsion stabilized by zein-pectin composite nanoparticles: characterization, antimicrobial effect and advantages in storage application[J]. International Journal of Biological Macromolecules, 2020,148:1280-1289.
doi: 10.1016/j.ijbiomac.2019.10.103 pmid: 31739045 |
[45] |
Tan H, Zhao L F, Tian S S, et al. Gelatin particle-stabilized high-internal phase emulsions for use in oral delivery systems: protection effect and in vitro digestion study[J]. J Agric Food Chem, 2017,65(4) : 900-907.
doi: 10.1021/acs.jafc.6b04705 pmid: 28064487 |
[46] | Frelichowska J, Bolzinger M A, Valour J P, et al. Pickering W/O emulsions: drug release and topical delivery[J]. International Journal of Pharmaceutics, 2009,368(1/2):7-15. |
[47] | Frelichowska J, Bolzinger M A, Pelletier J, et al. Topical delivery of lipophilic drugs from o/w Pickering emulsions[J]. International Journal Pharmaceutics, 2009,371(1/2):56-63. |
[48] |
Hayden C G J, Roberts M S, Benson H A E. Systemic absorption of sunscreen after topical application[J]. Lancet, 1997,350(9081) : 863-864.
pmid: 9310609 |
[49] | Braisch B, Köhler K, Schuchmann H P, et al. Preparation and flow behaviour of oil-in-water emulsions stabilised by hydrophilic silica particles[J]. Chemical Engineering & Technology, 2009,32(7) : 1107-1112. |
[50] |
Terescenco D, Hucher N, Picard C, et al. Sensory perception of textural properties of cosmetic Pickering emulsions[J]. International Journal of Cosmetic Science, 2020,42(2) : 198-207.
doi: 10.1111/ics.12604 pmid: 31997376 |
[1] | 柳婧璇, 金建明, 吴华. 化妆品植物原料(Ⅶ)——抗真菌的植物原料的研究与开发[J]. 日用化学工业(中英文), 2024, 54(3): 259-266. |
[2] | 毕武, 潘小红, 涂晓琴, 殷帅, 孙辉. 基于网络药理学的化妆品原料粉防己抗敏作用机制分析[J]. 日用化学工业(中英文), 2024, 54(3): 305-312. |
[3] | 李瑶瑶. 异橙黄酮的抗衰老及抗氧化功效研究[J]. 日用化学工业(中英文), 2024, 54(3): 313-319. |
[4] | 许梦然, 赵华. 化妆品晒后修护功效评价方法研究进展[J]. 日用化学工业(中英文), 2024, 54(3): 329-336. |
[5] | 张丽媛, 颜琳琦, 程巧鸳, 戚绿叶, 王容, 黄柳倩. 高效液相色谱法测定化妆品中14种α-羟基酸和羟基酸酯[J]. 日用化学工业(中英文), 2024, 54(3): 353-359. |
[6] | 徐炜, 邹坡, 李长于, 杨铭, 鹿燕, 李慧良. 超高效液相色谱-串联质谱法测定化妆品中36种兴奋剂[J]. 日用化学工业(中英文), 2024, 54(3): 360-368. |
[7] | 周康夫, 支奕轩, 王飞飞, 尚亚卓. 新型乳化体系及其在化妆品中的应用(Ⅵ)——微乳液[J]. 日用化学工业(中英文), 2024, 54(2): 139-148. |
[8] | 谢珍, 黄微, 张劲松, 陈舒怀, 瞿霖吉, 匡荣. 化妆品眼刺激性评价中角膜损伤生物标志物研究[J]. 日用化学工业(中英文), 2024, 54(2): 161-167. |
[9] | 潘小红, 高梓琪, 陈真, 殷帅, 黄海萍, 胡斌. 我国化妆品产品稳定性研究与管理现状的探讨[J]. 日用化学工业(中英文), 2024, 54(2): 201-208. |
[10] | 芦丽, 方方, 冯有龙, 曹玲. 前体离子扫描超高效液相色谱-三重四级杆串联质谱法快速筛查化妆品中非法添加的磺胺类药物[J]. 日用化学工业(中英文), 2024, 54(2): 216-223. |
[11] | 王任, 吴鸳鸯, 乔佳, 颜琳琦, 陈岑, 张丽媛. 市售儿童化妆品中苯氧乙醇的测定及初步风险特征评估[J]. 日用化学工业(中英文), 2024, 54(2): 224-230. |
[12] | 鲁毅翔, 伍丽婷, 蒋济民, 陈海露, 黄璇. 化妆品中托萘酯、利拉萘酯的高效液相色谱定量及高效液相色谱-串联质谱确证[J]. 日用化学工业(中英文), 2024, 54(2): 231-238. |
[13] | 张丽媛, 程巧鸳, 陈岑, 李泽桦, 黄柳倩, 戚绿叶. 高效液相色谱法测定化妆品中3种α-羟基酸及其酯[J]. 日用化学工业(中英文), 2024, 54(1): 102-106. |
[14] | 陆林玲, 鲁辉, 闵春艳, 钱叶飞. UHPLC-MS/MS法测定面膜化妆品中甘草、人参和黄芩类功效成分[J]. 日用化学工业(中英文), 2024, 54(1): 107-113. |
[15] | 龙慧端, 鲁毅翔, 覃江兰, 张科明. 高效液相色谱法同时测定化妆品中24种香豆素类化合物及质谱确证[J]. 日用化学工业(中英文), 2024, 54(1): 114-122. |
|