日用化学工业(中英文) ›› 2025, Vol. 55 ›› Issue (5): 649-658.doi: 10.3969/j.issn.2097-2806.2025.05.014
收稿日期:
2024-05-21
修回日期:
2025-05-15
出版日期:
2025-05-22
发布日期:
2025-06-11
基金资助:
Ying Zhang,Hua Wang,Yuehua Zuo,Chenguang Wang,Ziqin Zhai,Ming Liu()
Received:
2024-05-21
Revised:
2025-05-15
Online:
2025-05-22
Published:
2025-06-11
Contact:
*E-mail: liumingb@163.com.
摘要:
全氟和多氟烷基物质(PFAS)是一类具有持久性、高稳定性和生物积累性的物质,因其会给环境和人类健康带来危害而受到广泛关注。PFAS中的多种化合物在国内外都被列为持久性有机污染物,进入禁用或限用的重点管控清单。本文系统综述了国内外关于PFAS类物质的标准测定方法,总结了检测对象、定量方法、检出限或定量限,分析了标准测定方法的优势和不足。同时还阐述了PFAS类物质的半定量方法和快速检测方法,介绍了快速检测方法中所用的有机染料、纳米材料、分子印迹聚合物、生物等技术。最后提出根据实际使用场景和检测对象,选用半定量或快速检测方法作为初筛方法,标准测定方法作为确证,两者优势互补,以期为制定更加完善的PFAS类物质监控检测体系提供参考。
中图分类号:
张颖, 王华, 左玥华, 王晨光, 翟自芹, 柳明. 全氟和多氟烷基物质的检测方法综述[J]. 日用化学工业(中英文), 2025, 55(5): 649-658.
Ying Zhang, Hua Wang, Yuehua Zuo, Chenguang Wang, Ziqin Zhai, Ming Liu. A review of determination methods for per-and polyfluoroalkyl substances[J]. China Surfactant Detergent & Cosmetics, 2025, 55(5): 649-658.
表 1
国内PFAS相关典型标准测定方法"
仪器分析方法 | 检测对象 | 定量方法 | 定量限和/或检出限 | 标准编号 |
---|---|---|---|---|
LC-MS/MS | 各类纺织产品 | 外标法 | 全氟辛烷磺酰基化合物的定量限为0.5 μg/m3,全氟辛酸的定量限为0.005 mg/kg | GB/T 31126—2014 |
皮革、毛皮及其制品 | 外标法 | 定量限均为0.5 mg/kg | GB/T 36929—2018 | |
各类纺织品 | 外标法 | 定量限为0.03 mg/kg | GB/T 40917—2021 | |
各类纺织染整助剂 | 外标法 | 定量限0.5 mg/kg | GB/T 29493.2—2021 | |
含氟水性涂料、泡沫灭火材料、洗涤剂、织物整理剂、不粘炊具 | 外标法 | 检出限以全氟辛烷磺酸计,氟化工产品为质量分数0.000 2%,消费品为0.4 μg/m3 | GB/T 24169—2009 | |
涂料 | 外标法 | 检出限以全氟辛酸计为质量分数0.000 2% | GB/T 28606—2012 | |
纸板盒类、橡胶类、聚乙烯类、塑料类、树脂类、不粘锅涂层 | 内标法 | 检出限均为1.0 ng/g,定量限均为2.0 ng/g | GB 31604.35—2016 | |
分离膜产品 | 外标法 | 全氟辛烷磺酰基化合物的定量限为2 μg/kg,全氟辛酸的定量限为1 μg/kg | GB/T 33893—2017 | |
电子电气产品聚合物材料 | 外标法 | 全氟辛酸的检出限和定量限分别为0.01和0.003 5 mg/kg;全氟辛烷磺酸的检出限和定量限分别为0.006和0.021 mg/kg | GB/T 37760—2019 | |
动物源性食品 | 内标法 | 全氟辛酸和全氟辛烷磺酸的检出限分别为0.002和0.02 μg/kg,定量限分别为0.01和0.1 μg/kg | GB 5009.253—2016 | |
土壤和沉积物 | 内标法 | 取样量为2 g,试样定容体积为1.0 mL,进样体积为5.0 μL时,PFOS(以对应酸的浓度计)的方法检出限为0.4 μg/kg,定量限为1.6 μg/kg;PFOA(以对应酸的浓度计)的方法检出限为0.5 μg/kg,定量限为2.0 μg/kg | HJ 1334—2023 | |
地表水、地下水、生活污水、工业废水、海水 | 内标法 | 取样量为0.5 L,定容体积为1.0 mL,进样体积为5.0 μL时,PFOS(以对应酸的浓度计)的方法检出限为0.6 ng/L,定量限为2.4 ng/L,PFOA(以对应酸的浓度计)的方法检出限为0.5 ng/L,定量限为2.0 ng/L | HJ 1333—2023 | |
NMR | 泡沫灭火剂、水系灭火剂 | 内标法 | 检测限0.05% | XF/T 3020—2023 |
GC-MS/MS | 纸质材料 | 内标法 | 定量限均为10 μg/kg | SN/T 5352—2021 |
GC-MS | 各类纺织染整助剂 | 内标法 | 对氟化调聚物醇定量限10 mg/kg,对氟化丙烯酸酯定量限为1 mg/kg | GB/T 29493.2—2021 |
GC-ECD | 塑料制品 | 外标法 | 检出限0.005 mg/kg | DB35/T 1868—2019 |
表 2
国外典型PFAS相关标准测定方法"
标准发布机构 | 检测对象 | 定量方法 | 仪器分析方法 | 定量限、检出限和/或报告限 | 方法编号 |
---|---|---|---|---|---|
美国环境保护署(EPA) | 试剂水、饮用水 | 内标法 | LC-MS/MS | 检出限0.53~2.8 ng/L | 方法537.1[ |
饮用水 | 内标法 | LC-MS/MS | 报告限1.4~16 ng/L | 方法533[ | |
水,固体,生物固体和组织样品 | 内标法 | LC-MS/MS | 定量限0.2~5 ng/mL | 方法1633[ | |
水基质 | 外标法 | CIC | 检出限1.5 μg F-/L | 方法1621[ | |
固定来源的空气排放 | 内标法 | LC-MS/MS | 检出限0.08~2.77 ng/m3 | OTM 45[ | |
固定来源的空气排放 | 内标法 | GC/MS | 检出限0.027~0.271 μg/m3 报告限0.081~0.813 μg/m3 | OTM 50[ | |
美国材料与试验协会(ASTM) | 水、污泥、进水、出水和废水 | 外标法 | LC-MS/MS | 检出限0.7~106.8 ng/L | D7979-20[ |
土壤、污泥 | 外标法 | LC-MS/MS | 报告限25~125 ng/kg | D8535-23[ | |
土壤 | 外标法 | LC-MS/MS | 检出限2.41~258.37 ng/kg | D7968-23[ | |
水基质 | 外标法 | LC-MS/MS | 检出限1.2~20.3 ng/L | D8421-22[ | |
国际标准化组织(ISO) | 皮革 | 内标法 | LC-MS/MS | 定量限0.2 mg/kg | ISO 23702-1: 2023[ |
饮用水、天然水、海水、部分废水 | 内标法 | LC-MS/MS | 定量限≥0.2 ng/L | ISO 21675-2019[ | |
美国食品药品监督管理局(FDA) | 食品、饲料 | 内标法 | LC-MS/MS | 不同基质、不同目标物检出限2~481 ng/kg,定量限7~1 603 ng/kg | 方法 C-010.03[ |
[1] | 李怀波. 污水处理厂中全/多氟化合物分布特征、吸附及转化过程研究[D]. 无锡: 江南大学, 2021. |
[2] | 韩淼, 李泽楷, 许淋, 等. 全氟和多氟烷基化合物的生物体内迁移转化及毒性效应[J/OL]. 中国环境科学, 2024. http://doi.org/10.19674/j.cnki.issn1000-6923.20240004.002 |
[3] | Fenton S E, Ducatman A, Boobis A, et al. Per-and polyfluoroalkyl substance toxicity and human health review: current state of knowledge and strategies for informing future research[J]. Environmental Toxicology and Chemistry, 2021, 40 (3) : 606-630. |
[4] | United Nations Environment Programme. Stockholm convention on persistent organic pollutants (POPs) text and annexes, revised in 2019[EB/OL]. https://chm.pops.int/TheConvention/Overview/TextoftheConvention/tabid/2232/Default.aspx |
[5] | Regulation (EU) No 2019/1021 of the European parliament and of the council of 20 June 2019 on persistent organic pollutants. [EB/OL]. https://echa.europa.eu/pops-legislation |
[6] | 中华人民共和国生态环境部. 重点管控新污染物清单(2023年版)[EB/OL]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk02/202212/t20221230_1009167.html |
[7] | U. S. Environmental Protection Agency. Determination of selected per-andpolyfluorinated alkyl substances in drinkingwater by solid phase extraction and liquidchromatography/tandem mass spectrometry (LC/MS/MS). METHOD 537.1 [S/OL]. https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=348508&Lab=CESER&simpleSearch=0&showCriteria=2&searchAll=537.1&TIMSType=&dateBeginPublishedPresented=03%2F24%2F2018 |
[8] | U. S. Environmental Protection Agency. Determination of per-andpolyfluoroalkyl substances in drinking water byisotope dilution anion exchange solid phaseextraction and liquid chromatography/tandemmass spectrometry. METHOD 533 [S/OL]. https://www.epa.gov/dwanalyticalmethods/method-533-determination-and-polyfluoroalkyl-substances-drinking-water-isotope |
[9] | U. S. Environmental Protection Agency. Analysis of Per-and polyfluoroalkyl substances (PFAS) in aqueous, solid, biosolids, and tissuesamples by LC-MS/MS. METHOD 1633 [S/OL]. https://www.epa.gov/system/files/documents/2024-01/method-1633-final-for-web-posting.pdf |
[10] | U. S. Environmental Protection Agency. Determination of adsorbable organic fluorine (AOF) in aqueous matrices by combustion ionchromatography (CIC). METHOD 1621 [S/OL]. https://www.epa.gov/system/files/documents/2024-01/method-1621-for-web-posting.pdf |
[11] | U. S. Environmental Protection Agency. Measurement of selected Per-and polyfluorinated alkylsubstances from stationary sources. OTM 45 [S/OL]. https://www.epa.gov/sites/default/files/2021-01/documents/otm_45_semivolatile_pfas_1-13-21.pdf |
[12] | U. S. Environmental Protection Agency. Sampling and analysis of volatile fluorinated compounds fromstationary sources using passivated stainless-steel canisters. OTM 50 [S/OL]. https://www.epa.gov/system/files/documents/2024-01/otm-50-release-1_0.pdf |
[13] | American Society for Testing and Materials.Standard test method for determination of per-and polyfluoroalkyl substances in water, sludge, influent, effluent and wastewater by liquid chromatography tandem mass spectrometry (LC/MS/MS). D7979-20 [S]. United States: ASTM International, 2020. |
[14] | American Society for Testing and Materials.Standard test method for determination of per-and polyfluoroalkyl substances (PFAS) in soil/biosolid matrices by solvent extraction, filtering, and followed by liquid chromatography tandem mass spectrometry (LC/MS/MS). D8535-23 [S]. United States: ASTM international, 2023. |
[15] | American Society for Testing and Materials.Standard test method for determination of polyfluorinated compounds in soil by liquid chromatography tandem mass spectrometry (LC/MS/MS). D7968-23 [S]. United States: ASTM international, 2023. |
[16] | American Society for Testing and Materials.Standard test method for determination of Per-and polyfluoroalkyl substances (PFAS) in aqueous matrices by co-solvation followed by liquid chromatography tandem mass spectrometry (LC/MS/MS). D8421-22 [S]. United States: ASTM international, 2022. |
[17] | The International Organization for Standardization.Leather-per-and polyfluoroalkyl substances—part 1:determination of non-volatile compounds by extraction method using liquid chromatography. ISO 23702-1: 2023 [S]. ISO 2023. |
[18] | The International Organization for Standardization.Water quality-determination of perfluoroalkyl and polyfluoroalkyl substances (PFAS) in water-method using solid phase extraction and liquid chromatography-tandem mass spectrometry. ISO 21675: 2019 [S]. ISO 2019. |
[19] | U.S. Food & Drug Administration. Determination of 30 Per and polyfluoroalkyl substances (PFAS) in foodand feed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). C-010.03 [S/OL]. https://www.fda.gov/media/131510/download |
[20] | U. S. Environmental Protection Agency. Solvent dilution of non-potable waters. METHOD 3512 [S/OL]. https://www.epa.gov/hw-sw846/sw-846-test-method-3512-solvent-dilution-non-potable-waters |
[21] | U. S. Environmental Protection Agency. Per-and polyfluoroalkyl substances (PFAS) by liquid chromatography/tandem mass spectrometry (LC-MS/MS). METHOD 8327 [S/OL]. https://www.epa.gov/hw-sw846/sw-846-test-method-8327-and-polyfluoroalkyl-substances-pfas-liquid-chromatographytandem |
[22] | American Society for Testing and Materials.Standard guide for determination of airborne PFAS in the indoor air environment. D8560-24 [S]. United States: ASTM International, 2024. |
[23] | Houtz E F, Sedlak D L. Oxidative conversion as a means of detecting precursors to perfluoroalkyl acids in urban runoff[J]. Environmental Science & Technology, 2012, 46 (17) : 9342-9349. |
[24] | Houtz E F, Higgins C P, Field J A, et al. Persistence of perfluoroalkyl acid precursors in AFFF-impacted ground water and soil[J]. Environmental Science & Technology, 2013, 47 (15) : 8187-8195. |
[25] | D’Agostino L A, Mabury S A. Certain perfluoroalkyl and polyfluoroalkyl substances associated withaqueous film forming foam are widespread in canadian surface waters[J]. Environmental Science & Technology, 2017, 51: 13603-13613. |
[26] | 赵晓君, 朱兰兰, 苏婧怡, 等. 南极磷虾粉中氟形态及其分析技术[J]. 南方农业学报, 2012, 43 (9) : 1386-1390. |
[27] |
Cheng F, Zhang X, Dong Z M, et al. Smartphone app-based/ portable sensor for the detection of fluoro-surfactant PFOA[J]. Chemosphere, 2018, 191: 381-388.
doi: S0045-6535(17)31638-7 pmid: 29049961 |
[28] | Amin M A, Sobhani Z, Chadalavada S, et al. Smartphone-based/ Fluoro-SPE for selective detection of PFAS at ppb level[J]. Environmental Technology & Innovation, 2020, 18: 100778. |
[29] | Zhang F, Zheng Y, Liang J, et al. A simple and highly sensitive assay of perfluorooctanoic acid based on resonance light scattering technique[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2016, 159: 7-12. |
[30] | Trinh V, Malloy C S, Durkin T J, et al. Detection of PFAS and fluorinated surfactants using differential behaviors at interfaces of complex droplets[J]. ACS Sens, 2022, 7 (5) : 1514-1523. |
[31] | Zheng Z, Yu H J, Geng W C, et al. Guanidinocalix[5]arene for sensitive fluorescence detection and magnetic removal of perfluorinated pollutants[J]. Nature Communications, 2019, 10 (1) : 5762. |
[32] | Takayose M, Akamatsu K, Nawafune H, et al. Colorimetric detection of perfluorooctanoic acid (PFOA) utilizing polystyrene-modified gold nanoparticles[J]. Analytical Letters, 2012, 45 (18) : 2856-2864. |
[33] | 汪志辉. 石墨烯量子点传感器的制备及其对全氟辛酸检测[D]. 安徽: 合肥大学, 2022. |
[34] | Liu Q, Huang A Z, Wang N, et al. Rapid fluorometric determination of perfluorooctanoic acid by its quenching effect on the fluorescence of quantum dots[J]. Journal of Luminescence, 2015, 161: 374-381. |
[35] | Cennamo N, D’Agostino G, Porto G, et al. A molecularly imprinted polymer on a plasmonic plastic optical fiber to detect perfluorinated compounds in water[J]. Sensors, 2018, 18 (6) : 1836. |
[36] | Pitruzzella R, Arcadio F, Perri C, et al. Ultra-low detection of perfluorooctanoic acid using a novel plasmonic sensing approach combined with molecularly imprinted polymers[J]. Chemosensors, 2023, 11 (4). |
[37] | Wei Y M, Liu H J, Wang S P, et al. A portable molecularly imprinted polymer-modified microchip sensor for the rapid detection of perfluorooctanoic acid[J]. Analyst, 2023, 148 (16) : 3851-3859. |
[38] | Tabar F A, Lowdon J, Caldara M, et al. Thermal determination of perfluoroalkyl substances in environmental samples employing a molecularly imprinted polyacrylamide as a receptor layer[J]. Environmental Technology & Innovation, 2023. DOI: 10.1016/j.eti.2023.103021. |
[39] | 张星. 基于重链抗体的全氟辛酸免疫检测的研究[D]. 上海: 上海交通大学, 2015. |
[40] | Sunantha G, Vasudevan N. A method for detecting perfluorooctanoic acid and perfluorooctane sulfonate in water samples using genetically engineered bacterial biosensor[J]. Science of the Total Environment. 2020. DOI: 10.1016/j.scitotenv.2020.143544. |
[41] | Breshears L E, Mata-Robles S, Tang Y S, et al. Rapid, sensitive detection of PFOA with smartphone-based flow rate analysis utilizing competitive molecular interactions during capillary action[J]. Journal of Hazardous Materials, 2023, 446: 130699. |
[42] | Mann M M, Tang J D, Berger B W. Engineering human liver fatty acid binding protein for detection of poly- and perfluoroalkyl substances[J]. Biotechnology and Bioengineering, 2022, 119 (2) : 513-522. |
[43] | Moro G, Chiavaioli F, Liberi S, et al. Nanocoated fiber label-free biosensing for perfluorooctanoic acid detection by lossy mode resonance[J]. Results in Optics, 2021, 5: 100123. |
[44] | Lu D N, Zhu D Z, Gan H H, et al. An ultra-sensitive molecularly imprinted polymer (MIP) and gold nanostars (AuNS) modified voltammetric sensor for facile detection of perfluorooctance sulfonate (PFOS) in drinking water[J]. Sensors and Actuators B: Chemical, 2022, 352: 131055. |
[45] | Pierpaoli M, Szopinska M, Olejnik K, et al. Engineering boron and nitrogen codoped carbon nanoarchitectures to tailor molecularly imprinted polymers for PFOS determination[J]. Journal of Hazardous Materials, 2023, 458: 131873. |
[1] | 胡贝, 李丽霞, 丁晓萍, 吕稳, 李晓健, 李琼. 液质联用技术在化妆品抗感染类药物检测中的应用[J]. 日用化学工业(中英文), 2023, 53(12): 1443-1450. |
[2] | 周欣瑜,范梅梅,温雪华,董银卯,孟宏,郭苗苗. 化妆品风险物质检测方法的研究进展[J]. 日用化学工业, 2022, 52(4): 431-437. |
[3] | 肖子冰,邢航,窦增培,肖进新. 自然环境中能否出现可有效降解碳氟链的微生物[J]. 日用化学工业, 2021, 51(12): 1242-1249. |
[4] | 邢航,窦增培,肖子冰,肖进新. 我们该如何看待全氟或多氟烷基物质(PFAS)?[J]. 日用化学工业, 2020, 50(1): 49-53. |
[5] | 邢航, 陈现涛, 肖进新. 氟表面活性剂和氟聚合物(Ⅵ)——“弱位点”氟表面活性剂的合成[J]. 日用化学工业, 2016, 46(6): 309-313. |
[6] | 邢航,陈现涛,肖进新. 氟表面活性剂和氟聚合物(Ⅴ)——PFOS的短碳氟链替代品[J]. 日用化学工业, 2016, 46(5): 247-250. |
[7] | 邢航,贾旭宏,肖进新. 氟表面活性剂和氟聚合物(Ⅳ) ——PFOS问题的应对策略[J]. 日用化学工业, 2016, 46(4): 189-194. |
[8] | 邢航,伍毅,肖进新. 氟表面活性剂和氟聚合物(Ⅲ)——PFOS问题之我见[J]. 日用化学工业, 2016, 46(3): 123-128. |
[9] | 邢航,陈现涛,肖进新. 氟表面活性剂和氟聚合物(Ⅱ)——环境与安全问题[J]. 日用化学工业, 2016, 46(2): 66-74. |
[10] | 肖进新,邢航. 氟表面活性剂和氟聚合物(Ⅰ)——性能、合成(生产)及应用概述[J]. 日用化学工业, 2016, 46(1): 13-20. |
[11] | 陈梦, 周明昊. 染发剂中禁限用染料检测方法的研究现状[J]. 日用化学工业, 2015, 45(8): 462-467. |
[12] | 黄荣, 叶峻, 傅小红. 化妆品及其原料中有毒残留物检测方法研究进展[J]. 日用化学工业, 2014, 44(1): 39-44. |
|