日用化学工业 ›› 2022, Vol. 52 ›› Issue (8): 882-891.doi: 10.3969/j.issn.1001-1803.2022.08.014
收稿日期:
2021-12-30
修回日期:
2022-05-18
出版日期:
2022-08-22
发布日期:
2022-08-24
通讯作者:
杜志平
基金资助:
Zhao Fengtao,Li Xuanjing,Li Enze,Du Zhiping*(),Li Jianfeng,Shen Jing
Received:
2021-12-30
Revised:
2022-05-18
Online:
2022-08-22
Published:
2022-08-24
Contact:
Zhiping Du
摘要:
随着工业化进程的加快,一些含染料、难降解污染物、乳液等的有机废水大量排放,对人类和大自然都造成了不可逆转的危害,因此开发一种吸附容量大、分离效果好、循环稳定的吸附剂用于废水处理富有重要意义。磁性纳米Fe3O4复合材料具有选择性好、可快速分离、可循环利用等优点,在有机废水处理方面具有良好的应用前景,近年来受到科研工作者和水处理行业的广泛关注。文章首先介绍了磁性纳米Fe3O4吸附材料的制备方法,一些含有特定功能基团的吸附材料进行磁改性方法,及其对磁性吸附材料工业化生产促进作用;其次通过追踪在实际有机废水应用的研究动态,归纳总结了磁性复合材料的吸附机理;最后对磁性材料的发展前景进行了展望。从现有研究可以看出,今后应该开发更高效、适用范围更广的复合纳米Fe3O4磁性材料,并针对不同水质,进一步优化磁性Fe3O4纳米材料的制备方案,减少使用过程中的环境健康影响,增加其循环再生性能。
中图分类号:
赵峰滔,李宣镜,李恩泽,杜志平,李剑锋,申婧. 磁性纳米Fe3O4吸附材料的制备及在废水处理中的应用[J]. 日用化学工业, 2022, 52(8): 882-891.
Zhao Fengtao,Li Xuanjing,Li Enze,Du Zhiping,Li Jianfeng,Shen Jing. Preparation of magnetic nano-Fe3O4 and its application in wastewater treatment[J]. China Surfactant Detergent & Cosmetics, 2022, 52(8): 882-891.
表 1
磁性吸附剂污染物的吸附能力"
污染物种类 | 吸附剂 | 污染物 | 吸附容量 | 最优条件 | 来源 |
---|---|---|---|---|---|
染料废水 | Fe3O4@SiO2@CCS | Rhb | 191.57 mg/g | T=298 K | [ |
Fe3O4-CS | 腐殖酸(HA) | 44.84 mg/g | pH=4 | [ | |
Fe3O4/MgAl-LDH | 活性红(RR) 刚果红(CR) 酸性红1(AR1) | 97 mg/g 253 mg/g 52 mg/g | pH=2~10 T=298 K | [ | |
Fe3C/C | 铬黑T 溴酚蓝(BPB) 溴甲酚绿(BCG) 荧光素(FLU) | 2 105 mg/g 1 899 mg/g 2 007 mg/g 1 976 mg/g | [ | ||
磁性多壁碳纳米管 | 结晶紫(CV) 硫堇(Th) 健那绿(JG) 亚甲基蓝(MB) | 227.7 mg/g 250.0 mg/g 36.4 mg/g 48.1 mg/g | pH=7 | [ | |
乙二胺改性的磁性壳聚糖纳米粒子(EMCN) | 酸橙7 酸橙10 | 3.47 mmol/g 2.25 mmol/g | pH=3 pH=4 T=298 K | [ | |
有机污染物 | 磁性炭材料(NMC) | TCN | 48.35 mg/g | pH=6.8 | [ |
磁性杏仁壳活性炭 | 三硝基苯酚(TNP) | 70.83 mg/g | pH=2 T=298 K | [ | |
胺化β-环糊精官能化的Fe3O4 | 萘普生(CBZ) 卡马西平(NAP) 双酚A(BPA) | 1.304 mg/g 1.074 mg/g 0.899 mg/g | pH=7 T=298 K | [ | |
WSBC/Fe3O4 PSBC/Fe3O4 | 磷酸二铵 | 217.39 mg/g 212.77 mg/g | pH=4 T=298 K | [ | |
乳液废水 | Fe3O4/SiO2-APTES Fe3O4/SiO2-QC | 乳化油 | pH=4~7 | [ | |
Fe3O4@APFS | 乳化油 | pH=7 | [ | ||
EP@APTES-Fe3O4 | 乳化油 | pH=2~6 | [ | ||
Fe3O4@CS@NaOL | 乳化油 | pH=4 | [ |
[1] | Yang Jie, Yang Xue, Gao Yuan. Analysis of industrial wastewater treatment methods in coking plant[J]. Environment and Development, 2020, 32 (10) : 51-52. |
[2] |
Chen D, Xu R. Hydrothermal synthesis and characterization of nanocrystalline Fe3O4 powders[J]. Materials Research Bulletin, 1998, 33 (7) : 1015-1021.
doi: 10.1016/S0025-5408(98)00073-7 |
[3] |
Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media[J]. IEEE Transactions on Magnetics, 1981, 17 (2) : 1247-1248.
doi: 10.1109/TMAG.1981.1061188 |
[4] |
Liu X Q, Ma Z Y, Xing J M, et al. Preparation and characterization of amino-silane modified superparamagnetic silica nanospheres[J]. Journal of Magnetism and Magnetic Materials, 2004, 270: 1-6.
doi: 10.1016/j.jmmm.2003.07.006 |
[5] |
Murthy T P K, Gowrishankar B S, Krishna R H, et al. Magnetic modification of coffee husk hydrochar for adsorptive removal of methylene blue: Isotherms, kinetics and thermodynamic studies[J]. Environmental Chemistry and Ecotoxicology, 2020, 2: 205-212.
doi: 10.1016/j.enceco.2020.10.002 |
[6] | Yang Sheng, Zhang Xiaowen, He Peng, et al. Preparation of magnetized hawaii nutshell activated carbon and its adsorption mechanism for U(Ⅵ)[J]. Anhui Agricultural Science Bulletin, 2019, 25 (8) : 125-130. |
[7] |
Wei H, Yang W S, Xi Q, et al. Preparation of Fe3O4@graphene oxide core-shell magnetic particles for use in protein adsorption[J]. Materials Letters, 2012, 82: 224-226.
doi: 10.1016/j.matlet.2012.05.086 |
[8] |
Tang Y, Zhang S H, Su YL, et al. Removal of microplastics from aqueous solutions by magnetic carbon nanotubes[J]. Chemical Engineering Journal, 2021, 406: 126804.
doi: 10.1016/j.cej.2020.126804 |
[9] | Zhou Xiaolei. Preparation of magnetic clay and absorption of calcium ion in aqueous solution[J]. Yunnan Chemical Technology, 2020, 47 (8) : 61-64. |
[10] | Xing Min, Lei Xiping, Han Ding, et al. Adsorption properties of Fe3O4/Kaolin magnetic composites for Cu2+[J]. Library Theory and Practice, 2019, 36 (9) : 2204-2211. |
[11] | Huang Ming, Li Shaofeng, Lu Xiuguo, et al. Synthesis of magnetic kaolin and adsorption of lead(Ⅱ)[J]. Chinese Journal of Environmental Engineering, 2016, 10 (11) : 6439-6445. |
[12] | Zulfikar M A, Afrita S, Wahyuningrum D, et al. Preparation of Fe3O4-chitosan hybrid nano-particles used for humic acid adsorption[J]. Environmental Nanotechnology, Monitoring & Management, 2016, 6: 64-75. |
[13] | Wang S J, Li E Z, Li Y Z, et al. Enhance removal of dissolved humic acid from water using eco-friendly phenylalanine-modified-chitosan Fe3O4 magnetic nanoparticles[J]. Chemistry Select, 2020, 5 (14) : 4285-4291. |
[14] |
Chen B, Long F X, Chen S J, et al. Magnetic chitosan biopolymer as a versatile adsorbent for simultaneous and synergistic removal of different sorts of dyestuffs from simulated wastewater[J]. Chemical Engineering Journal, 2020, 385: 123926.
doi: 10.1016/j.cej.2019.123926 |
[15] |
Zong P F, Cao D L, Wang S F, et al. Synthesis of Fe3O4/CD magnetic nanocomposite via low temperature plasma technique with high enrichment of Ni (Ⅱ) from aqueous solution[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 70: 134-140.
doi: 10.1016/j.jtice.2016.10.022 |
[16] | Gong Hongxia, Hu Peizhu, Jiang Mengyun, et al. Adsorption mechanism investigation of tetraethylenepentamine- functionalized nano-Fe3O4 magnetic polymers in Cu(Ⅱ), Cr(Ⅵ) co-existing water system[J]. Acta Chimica Sinica, 2011, 69 (22) : 2673-2681. |
[17] |
Pan S D, Shen H Y, Xu Q H, et al. Surface mercapto engineered magnetic Fe3O4 nanoadsorbent for the removal of mercury from aqueous solutions[J]. Journal of Colloid and Interface Science, 2012, 365 (1) : 204-212.
doi: 10.1016/j.jcis.2011.09.002 |
[18] |
Zhang S X, Zhang Y Y, Liu J S, et al. Thiol modified Fe3O4@SiO2 as a robust, high effective, and recycling magnetic sorbent for mercury removal[J]. Chemical Engineering Journal, 2013, 226: 30-38.
doi: 10.1016/j.cej.2013.04.060 |
[19] |
Zhang Q G, Wu J Y, Lou X B. Facile preparation of a novel Hg(Ⅱ)-ion-imprinted polymer based on magnetic hybrids for rapid and highly selective removal of Hg(Ⅱ) from aqueous solutions[J]. RSC Advances, 2016, 6: 14916-14926.
doi: 10.1039/C5RA22008D |
[20] | Zhang Shuang. Surface modification of Fe3O4 nanoparticles for treatment on emulsified oil wastewater[D]. Hangzhou: Hangzhou Dianzi University, 2017. |
[21] |
Long J, Li X F, Wu Z Z, et al. Immobilization of pullulanase onto activated magnetic chitosan/Fe3O4nanoparticles prepared by in situ mineralization and effect of surface functional groups on the stability[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 472: 69-77.
doi: 10.1016/j.colsurfa.2015.02.038 |
[22] |
Galhoum A A, Atia A A, Mahfouz M G, et al. Dy (Ⅲ) recovery from dilute solutions using magnetic-chitosan nano-based particles grafted with amino acids[J]. Journal of Materials Science, 2015, 50 (7) : 2832-2848.
doi: 10.1007/s10853-015-8845-z |
[23] |
Lü T, Chen Y, Qi D M, et al. Treatment of emulsified oil wastewaters by using chitosan grafted magnetic nanoparticles[J]. Journal of Alloys and Compounds, 2017, 696: 1205-1212.
doi: 10.1016/j.jallcom.2016.12.118 |
[24] | Song B Y, Eom Y, Lee T G. Removal and recovery of mercury from aqueous solution using magnetic silica nanocomposites[J]. Applied Surface Ence, 2011, 257 (10) : 4754-4759. |
[25] |
Hu X J, Wang J S, Liu Y G, et al. Adsorption of chromium (Ⅵ) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics[J]. Journal of Hazardous Materials, 2011, 185 (1) : 306-314.
doi: 10.1016/j.jhazmat.2010.09.034 |
[26] |
Wang G H, Liu J D, Wang X G, et al. Adsorption of uranium (Ⅵ) from aqueous solution onto cross-linked chitosan[J]. Journal of Hazardous Materials, 2009, 168: 1053-1058.
doi: 10.1016/j.jhazmat.2009.02.157 |
[27] |
Singh S, Barick K C, Bahadur D. Surface engineered magnetic nanoparticles for removal of toxic metal ions and bacterial pathogens[J]. Journal of Hazardous Materials, 2011, 192 (3) : 1539-1547.
doi: 10.1016/j.jhazmat.2011.06.074 |
[28] |
Idris S A, Harvey S R, Gibson L T. Selective extraction of mercury (Ⅱ) from water samples using mercapto functionalised-MCM-41 and regeneration of the sorbent using microwave digestion[J]. Journal of Hazardous Materials, 2011, 193: 171-176.
doi: 10.1016/j.jhazmat.2011.07.037 |
[29] |
Zhang B L, Yu H Y, Wang J Q, et al. Fe3O4@SiO2@CCS porous magnetic microspheres as adsorbent for removal of organic dyes in aqueous phase[J]. Journal of Alloys and Compounds, 2018, 735: 1986-1996.
doi: 10.1016/j.jallcom.2017.11.349 |
[30] |
Shan R R, Yan L G, Yang K, et al. Magnetic Fe3O4/MgAl-LDH composite for effective removal of three red dyes from aqueous solution[J]. Chemical Engineering Journal, 2014, 252: 38-46.
doi: 10.1016/j.cej.2014.04.105 |
[31] |
Ma J, Liu C T, Chen K Z. Magnetic carbon bubble for pollutants removal[J]. Separation and Purification Technology, 2019, 225: 74-79.
doi: 10.1016/j.seppur.2019.05.038 |
[32] |
Rattanachueskul N, Saning A, Kaowphong S, et al. Magnetic carbon composites with a hierarchical structure for adsorption of tetracycline, prepared from sugarcane bagasse via hydrothermal carbonization coupled with simple heat treatment process[J]. Bioresource Technology, 2017, 226: 164-172.
doi: S0960-8524(16)31683-2 pmid: 28006734 |
[33] |
Mohan D, Sarswat A, Singh V K, et al. Development of magnetic activated carbon from almond shells for trinitrophenol removal from water[J]. Chemical Engineering Journal, 2011, 172: 1111-1125.
doi: 10.1016/j.cej.2011.06.054 |
[34] |
Ai T, Jiang X J, Liu Q Y, et al. Daptomycin adsorption on magnetic ultra-fine wood-based biochars from water: Kinetics, isotherms, and mechanism studies[J]. Bioresource Technology, 2019, 273: 8-15.
doi: 10.1016/j.biortech.2018.10.039 |
[35] | Dai Liang, He Wenzhi, Li Bingjing, et al. Progress of treatment technologies for wastewater from daily chemicals industry[J]. Chemical Industry and Engineering Progress, 2014, 33 (S1) : 273-278. |
[36] | Zhou X Z. Study on the pretreatment of high concentration emulsion wastewater by coagulation-fenton oxidation[D]. Chongqing: Chongqing Jiaotong University, 2020. |
[37] |
Xu H Y, Jia W H, Ren S L, et al. Novel and recyclable demulsifier of expanded perlite grafted by magnetic nanoparticles for oil separation from emulsified oil wastewaters[J]. Chemical Engineering Journal, 2017, 337: 10-18.
doi: 10.1016/j.cej.2017.12.084 |
[38] |
Xu Z H, Zhu Q, Bian J M. Preparation of a recyclable demulsifier for the treatment of emulsified oil wastewater by chitosan modification and sodium oleate grafting Fe3O4[J]. Journal of Environmental Chemical Engineering, 2021, 9 (4) : 105663.
doi: 10.1016/j.jece.2021.105663 |
[39] |
Madrakian T, Afkhami A, Ahmadi M, et al. Removal of some cationic dyes from aqueous solutions using magnetic-modified multi-walled carbon nanotubes[J]. Journal of Hazardous Materials, 2011, 196: 109-114.
doi: 10.1016/j.jhazmat.2011.08.078 pmid: 21930344 |
[40] |
Zhou L M, Jin J Y, Liu Z R, et al. Adsorption of acid dyes from aqueous solutions by the ethylenediamine-modified magnetic chitosan nanoparticles[J]. Journal of Hazardous Materials, 2011, 185: 1045-1052.
doi: 10.1016/j.jhazmat.2010.10.012 |
[41] |
Ghosh S, Badruddoza A Z M, Hidajat K, et al. Adsorptive removal of emerging contaminants from water using superparamagnetic Fe3O4 nanoparticles bearing aminated β-cyclodextrin[J]. Journal of Environmental Chemical Engineering, 2013, 1 (3) : 122-130.
doi: 10.1016/j.jece.2013.04.004 |
[42] |
Awual M R, Kobayashi T, Shiwaku H, et al. Evaluation of lanthanide sorption and their coordination mechanism by EXAFS measurement using novel hybrid adsorbent[J]. Chemical Engineering Journal, 2013, 225: 558-566.
doi: 10.1016/j.cej.2013.04.015 |
[43] | Jia Y S, Li E Z, Du Z P, et al. Recovery of bisphenol A by pH-triggered magnetic nanoparticles[J]. NANO, 2019, 14 (5) : 141-150. |
[44] |
Feng C X, Zhang J W, Lang R, et al. Unusual photo-induced adsorption-desorption behavior of propylene on Ag/TiO2 nanotube under visible light irradiation[J]. Applied Surface Science, 2011, 257 (6) : 1864-1870.
doi: 10.1016/j.apsusc.2010.09.004 |
[45] |
Liu H J, Chen M, Wei D D, et al. A novel visible light controllable adsorption-desorption system with a magnetic recyclable adsorbent[J]. Science of The Total Environment, 2020, 707: 136025.
doi: 10.1016/j.scitotenv.2019.136025 |
[46] |
Mohan D, Sarswat A, Singh V K, et al. Development of magnetic activated carbon from almond shells for trinitrophenol removal from water[J]. Chemical Engineering Journal, 2011, 172 (2/3) : 1111-1125.
doi: 10.1016/j.cej.2011.06.054 |
[47] |
Chang S C, Zhang Q, Lu Y K, et al. High-efficiency and selective adsorption of organic pollutants by magnetic CoFe2O4/graphene oxide adsorbents: Experimental and molecular dynamics simulation study[J]. Separation and Purification Technology, 2020, 238: 116400.
doi: 10.1016/j.seppur.2019.116400 |
[48] |
Tseng J Y, Chang C Y, Chang C F, et al. Kinetics and equilibrium of desorption removal of copper from magnetic polymer adsorbent[J]. Journal of Hazardous Materials, 2009, 171: 370-377.
doi: 10.1016/j.jhazmat.2009.06.030 |
[49] |
Zhang Y X, Cheng Y X, Chen N N, et al. Recyclable removal of bisphenol A from aqueous solution by reduced graphene oxide-magnetic nanoparticles: Adsorption and desorption[J]. Journal of Colloid and Interface Science, 2014, 421: 85-92.
doi: 10.1016/j.jcis.2014.01.022 |
[1] | 段玉婷, 赵樱淼, 沈绥, 卢振西, 梁兵, 龙佳朋. 多孔氮化硼材料的制备及其吸附性能研究[J]. 日用化学工业(中英文), 2024, 54(3): 273-281. |
[2] | 金绍娣, 许雪儿, 顾东雅. 三乙烯四胺固化单宁吸附剂制备及性能研究[J]. 日用化学工业(中英文), 2024, 54(3): 290-297. |
[3] | 胡可云. Fe3O4基核壳纳米结构材料的制备及顺磁性研究[J]. 日用化学工业(中英文), 2024, 54(3): 298-304. |
[4] | 安瑞,赵庆. 水溶液中三氯生的吸附研究进展[J]. 日用化学工业(中英文), 2023, 53(8): 945-953. |
[5] | 吴雨闻, 马铃, 陈殿松, 常宽, 王靖. 头发与头皮护理的科学基础(Ⅰ)——水分对头发性能的影响以及头发保湿锁水功效的研究[J]. 日用化学工业(中英文), 2023, 53(1): 8-15. |
[6] | 王豪波,易芸,付成兵,刘飞,曹建新,潘红艳. 改性高岭土对工业氯化钙中Cu2+和Pb2+的吸附去除研究[J]. 日用化学工业, 2022, 52(8): 819-826. |
[7] | 喻红梅,周峰,华平,李建华,钱锋. 磁性碳基固体酸制备及其在糖苷合成中的应用研究[J]. 日用化学工业, 2022, 52(7): 717-723. |
[8] | 宣超,胡昌荣,易芸,刘飞,曹建新,潘红艳. 磷石膏对黄壤磷吸附性能及吸附动力学分析[J]. 日用化学工业, 2022, 52(6): 606-612. |
[9] | 张倩洁,沈兴亮,盛涛涛,张婉萍,许建营. 十六烷基三甲基溴化铵-珍珠粉相互作用及其稳定乳液的双重相转变[J]. 日用化学工业, 2022, 52(5): 468-475. |
[10] | 喻红梅,华平,李建华,钱锋. 磁性固体酸催化剂Fe3O4/C-SO3H制备及表征[J]. 日用化学工业, 2022, 52(4): 396-403. |
[11] | 董振鹏,田威. 脂肪酸甲酯乙氧基化物过滤工艺研究[J]. 日用化学工业, 2022, 52(3): 258-262. |
[12] | 张勤,石秋红. PoPD-TiO2-GO复合光催化剂在化工染料废水吸附降解中的应用[J]. 日用化学工业(中英文), 2022, 52(10): 1088-1093. |
[13] | 智丽飞,石秀芳,张二壮,李晓明,王慧,潘瑞丽. 不同反离子双癸基季铵盐对聚四氟乙烯表面的吸附行为[J]. 日用化学工业, 2021, 51(8): 725-733. |
[14] | 王军,张晨龙,杨许召,白亚榕. 磁性表面活性剂的研究进展[J]. 日用化学工业, 2021, 51(6): 546-553. |
[15] | 陈越,殷鸿尧,隋晓媛,冯玉军. 聚四氟乙烯分散液稳定性研究进展[J]. 日用化学工业, 2021, 51(5): 457-462. |
|