日用化学工业 ›› 2020, Vol. 50 ›› Issue (7): 481-487.doi: 10.3969/j.issn.1001-1803.2020.07.009
收稿日期:
2019-09-17
修回日期:
2020-05-29
出版日期:
2020-07-22
发布日期:
2020-07-23
通讯作者:
孟宏
作者简介:
朱文驿(1994-),女,湖南澧县人,研发工程师,硕士,电话:18600248080,E-mail:
ZHU Wen-yi1(),ZHA Pei-na1,QIU Xian-rong2,MENG Hong3(
)
Received:
2019-09-17
Revised:
2020-05-29
Online:
2020-07-22
Published:
2020-07-23
Contact:
Hong MENG
摘要:
皮肤暗黄是当今困扰中国女性的皮肤问题之一,也是化妆品和食品行业关注的研发热点之一。通过检索国内外文献,分析了影响皮肤暗黄的因素,包括黑色素的形成与分布、细胞因子对黑色素细胞的影响、血液微循环、氧化蛋白质导致皮肤暗黄的发生机理,并提出皮肤暗黄的解决途径,对美白产品研发具有一定的指导意义。
中图分类号:
朱文驿,查沛娜,邱显荣,孟宏. 中国女性皮肤暗黄影响因素研究进展[J]. 日用化学工业, 2020, 50(7): 481-487.
ZHU Wen-yi,ZHA Pei-na,QIU Xian-rong,MENG Hong. The review of influencing factors of dark yellow skin in Chinese women[J]. China Surfactant Detergent & Cosmetics, 2020, 50(7): 481-487.
表 2
旁分泌刺激因子对黑色素细胞的作用通路"
细胞因子 | 受体 | 通路 | 作用 |
---|---|---|---|
SLF | c-Kit | MAPK | 促进黑色素细胞增殖,黑色素合成,树突形成[ |
SCF | |||
HGF | c-Met | MAPK | 上调黑色素细胞增殖所需蛋白[ |
bFGF | FGFR-1/2 | MAPK | 促进黑色素细胞增殖,黑色素合成,树突形成[ |
LIF | Gp130LIFRα | MAPK | 促进黑色素细胞增殖或分化[ |
GM-CSF | GMCSFR | MAPK | 上调黑色素细胞增殖所需蛋白,上调TYR、TYRP1、DCT,促进黑色素细胞增殖[ |
ET-1 | ETBR | PKC | 促进TYR mRNA、蛋白质和酶活,促进黑色素细胞增殖/树突形成[ |
DAG | / | PKC | 激活酪氨酸酶,从而刺激黑色素生成[ |
α-MSH | MC1-R | PKA | 上调TYR1、TYRP1、DCT,促进真黑色素合成,促进黑色素细胞增殖[ |
ACTH | 上调TYR1、TYRP1、DCT,促进真黑色素合成,促进黑色素细胞增殖/树突形成[ | ||
PGs | EP1/EP3/FP | PLC | 促进黑色素细胞树突形成/促进黑色素小体转运[ |
NGF | / | / | 促进黑色素合成,树突形成[ |
NO | / | PKG | 促进黑色素合成[ |
DKK1 | / | / | 抑制MITF和黑色素生成蛋白的表达,损害角蛋白细胞吸收黑色素的能力[ |
TGFβ1 | TBRI/TBRII | Smads | 通过下调MITF和PAX3,抑制黑色素细胞分化和黑色素生成[ |
多效蛋白 | RPTPβ/ζ | ALK | 抑制酪氨酸酶和MITF蛋白的表达[ |
[1] |
Costin G E, Hearing V J. Human skin pigmentation: melanocytes modulate skin color in response to stress[J]. FASEB Journal, 2007,21(4) : 976-994.
doi: 10.1096/fj.06-6649rev pmid: 17242160 |
[2] | Di Y, Liu J W, Wang S Y, et al. Classification and characteristic comparison of yellowish skin [C] // . Changsha: National Academic Annual Conference on Skin and Venereal Diseases with Integrated Traditional Chinese and Western Medicine, 2015. |
[3] |
Rigal J D, Mazis I D, Diridollou S, et al. The effect of age on skin color and color heterogeneity in four ethnic groups[J]. Skin Research & Technology, 2010,16(2) : 168-178.
doi: 10.1111/j.1600-0846.2009.00416.x pmid: 20456097 |
[4] | Alaluf S, Atkins D, Barrett K, et al. The impact of epidermal melanin on objective measurements of human skin colour[J]. Pigment Cell Research, 2012 ( 15) : 119-126. |
[5] | Wang S Y. Analysis of influencing factors of skin color based on ITA value[J]. Beijing Daily Chemical, 2019. |
[6] |
Ogura Y, Kuwahara T, Akiyama M, et al. Dermal carbonyl modification is related to the yellowish color change of photo-aged Japanese facial skin[J]. Journal of Dermatological Science, 2011,64(1) : 45-52.
doi: 10.1016/j.jdermsci.2011.06.015 |
[7] |
Ohshima H, Oyobikawa M, Tada A, et al. Melanin and facial skin fluorescence as markers of yellowish discoloration with aging[J]. Skin Research & Technology, 2009,15(4):496-502.
doi: 10.1111/j.1600-0846.2009.00396.x pmid: 19832964 |
[8] |
Alaluf S, Heinrich U, Stahl W, et al. Dietary carotenoids contribute to normal human skin color and UV photosensitivity[J]. The Journal of Nutrition, 2002,132(3) : 399-403.
doi: 10.1093/jn/132.3.399 pmid: 11880562 |
[9] | Alaluf S, Atkins D, Barrett K, et al. Ethnic variation in melanin content and composition in photo-exposed and photoprotected human skin[J]. Pigment Cell & Melanoma Research, 2002,15(2) : 112-118. |
[10] | Li Chao. Indentification and mechanism research of the protein interacting with tyrosinase[D]. Suzhou: Soochow University, 2014. |
[11] |
Videira I F, Moura D F, Magina S. Mechanisms regulating melanogenesis[J]. Anais Brasileiros De Dermatologia, 2013,88(1) : 76-83
doi: 10.1590/s0365-05962013000100009 pmid: 23539007 |
[12] |
Romero-Graillet C, Aberdam E, Biagoli N, et al. Ultraviolet B radiation acts through the nitric oxide and cGMP signal transduction pathway to stimulate melanogenesis in human melanocytes[J]. The Journal of Biological Chemistry, 1996,271(45) : 28052-28056.
doi: 10.1074/jbc.271.45.28052 pmid: 8910416 |
[13] |
Qiu C, Li P, Bi J, et al. Differential expression of TYRP1 in adult human retinal pigment epithelium and uveal melanoma cells[J]. Oncology Letters, 2016,11:2379-2383.
doi: 10.3892/ol.2016.4280 pmid: 27073483 |
[14] | Gao L, Zhao Y H, Liu C L, et al. Research progress in synjournal of melanin regulated by tyrosinase related protein 1[J]. Animal Husbandry and Feed Science , 2010,31(10) : 114-116. |
[15] |
Pak B J, Lee J, Thai B L, et al. Radiation resistance of human melanoma analysed by retroviral insertional mutagenesis reveals a possible role for dopachrome tautomerase[J]. Oncogene, 2004,23(1) : 30-38.
doi: 10.1038/sj.onc.1207007 pmid: 14712208 |
[16] |
Michard Q, Commo S, Belaidi J P, et al. TRP-2 specifically decreases WM35 cell sensitivity to oxidative stress[J]. Free Radical Biology & Medicine, 2008,44(6) : 1023-1031.
doi: 10.1016/j.freeradbiomed.2007.11.021 pmid: 18206123 |
[17] | Alonso S, Izagirre N, Smith-Zubiaga I, et al. Complex signatures of selection for the melanogenic loci TYR, TYRP1 and DCT in humans[J] . BMC Evolutionary Biology, 2008,8(1) : 74. |
[18] | Lassalle M W, Igarashi S, Sasaki M, et al. Effects of melanogenesis-inducing nitric oxide and histamine on the production of eumelanin and pheomelanin in cultured human melanocytes[J] . Pigment Cell & Melanoma Research, 2003,16(1) : 81-84. |
[19] |
Scott G, Leopardi S, Parker L, et al. The proteinase-activated receptor-2 mediates phagocytosis in a Rho-dependent manner in human keratinocytes[J]. Journal of Investigative Dermatology, 2003,121(3) : 529-541.
doi: 10.1046/j.1523-1747.2003.12427.x pmid: 12925212 |
[20] | Hui Kun. The effect of cyclooxygenase on the formation of the dendrites induced by UVB irradiation and its mechanisms[D]. Xi’an: The Fourth Military Medical University, 2012 |
[21] |
Wu X F, Hammer J A. Melanosome transfer: it is best to give and receive[J]. Current Opinion in Cell Biology, 2014 ( 29) : 1-7.
doi: 10.1016/j.ceb.2014.02.003 |
[22] | Fan Y J, Xue C Y. Research progress of protease-activated receptor 2 in skin pigmentation[J]. Chinese Journal of Aesthetic and Plastic Surgery, 2015,26(5) : 311-312. |
[23] |
Yamaguchi Y, Passeron T, Hoashi T, et al. Dickkopf 1 (DKK1) regulates skin pigmentation and thickness by affecting Wnt/β-catenin signaling in keratinocytes[J]. The FASEB Journal, 2007,22(4) : 1009-1020.
doi: 10.1096/fj.07-9475com pmid: 17984176 |
[24] | Li C X, Wang L. New recognition and biological research progress of skin pigmentation[J]. Chinese Journal of Aesthetic Medicine, 2009,18(9) : 1090-1092. |
[25] |
Homma T, Kageyama S, Nishikawa A, et al. Melanosome degradation in epidermal keratinocytes related to lysosomal protease cathepsin V[J]. Biochemical and Biophysical Research Communications, 2018,500(2) : 339-343.
doi: 10.1016/j.bbrc.2018.04.070 pmid: 29654760 |
[26] | Li Y, Liu W Y, Cai Y Q, et al. Progress on related regulatory factors of melanocytes[J] . Progress In Veterinary Medicine, 2017,38(2) : 80-81. |
[27] |
Park J Y, Kim M, Park T J, et al. TGFβ1 derived from endothelial cells inhibits melanogenesis[J]. Pigment Cell & Melanoma Research, 2016,29(4) : 477-480.
doi: 10.1111/pcmr.12491 pmid: 27172887 |
[28] |
Pearl E G. New insights and new therapies in vitiligo[J]. The Journal of the American Medical Association, 2005,293(6) : 730.
doi: 10.1001/jama.293.6.730 pmid: 15701915 |
[29] |
Marconi A, Panza M C, Bonnet-Duquennoy M, et al. Expression and function of neurotrophins and their receptors in human melanocytes[J]. International Journal of Cosmetic Science, 2006,28(4) : 255-261.
doi: 10.1111/j.1467-2494.2006.00321.x pmid: 18489265 |
[30] |
Tsunoda K, Arakawa N, Akasaka T. A case of pigmented pilomatricoma (calcifying epithelioma): the role of mast cells in pigmentation[J]. European Journal of Dermatology, 2016,26(3) : 308-309.
doi: 10.1684/ejd.2016.2746 pmid: 26985675 |
[31] |
Choi W J, Kim M, Park J Y, et al. Pleiotrophin inhibits melanogenesis via Erk1/2-MITF signaling in normal human melanocytes[J]. Pigment Cell Melanoma Research, 2015,28:51-60.
doi: 10.1111/pcmr.12309 pmid: 25141921 |
[32] |
Nylander K, Bourdon J C, Bray S E, et al. Transcriptional activation of tyrosinase and TRP-1 by p53 links UV irradiation to the protective tanning response[J]. The Journal of Pathology, 2000,190(1) : 39-46.
doi: 10.1002/(SICI)1096-9896(200001)190:1<39::AID-PATH492>3.0.CO;2-V pmid: 10640990 |
[33] |
Schallreuter K, Kothari S, Chavan B, et al. Regulation of melanogenesis-controversies and new concepts[J]. Experimental Dermatology, 2008,17(5) : 395-404.
doi: 10.1111/j.1600-0625.2007.00675.x pmid: 18177348 |
[34] |
Dong Y, Wang H, Cao J, et al. Nitric oxide enhances melanogenesis of alpaca skin melanocytes in vitro by activating the MITF phosphorylation[J]. Molecular & Cellular Biochemistry, 2011,352:255-260.
doi: 10.1007/s11010-011-0761-1 pmid: 21431368 |
[35] |
Wang Y, Viennet C, Robin S, et al. Precise role of dermal fibroblasts on melanocyte pigmentation [J] . Journal of Dermatological Science, 2017. http://dx.doi.org/10.1016/j.jdermsci.2017.06.018.
doi: 10.1016/j.jdermsci.2020.05.005 pmid: 32507539 |
[36] |
Choi W J, Kim M, Park J Y, et al. Pleiotrophin inhibits melanogenesis via Erk1/2-MITF signaling in normal human melanocytes[J] . Pigment Cell Melanoma Research, 2014,28(1) : 51-60.
doi: 10.1111/pcmr.12309 pmid: 25141921 |
[37] |
Stamatas G N, Kollias N. Blood stasis contributions to the perception of skin pigmentation[J]. Journal of Biomedical Optics, 2004,9(2) : 315.
doi: 10.1117/1.1647545 pmid: 15065897 |
[38] | Masamitsu I, Masayuki Y, Keitaro N, et al. Glycation stress and photo-aging in skin[J] . Anti-aging Medicine, 2011,8(3) : 23-29. |
[39] |
Yamawaki Y, Mizutani T, Okano Y, et al. The impact of carbonylated proteins on the skin and potential agents to block their effects[J]. Experimental Dermatology, 2019,28:32-37.
doi: 10.1111/exd.13821 pmid: 30698875 |
[40] |
Thornton M. The biological actions of estrogens on skin[J]. Experimental Dermatology, 2002,11(6 ) : 487-502.
doi: 10.1034/j.1600-0625.2002.110601.x pmid: 12473056 |
[41] |
Mark R, Johannes B, Maria S, et al. Oxidative stress in aging human skin[J]. Biomolecules, 2015,5(2) : 545-589.
doi: 10.3390/biom5020545 pmid: 25906193 |
[42] | Monnier V M. Nonenzymatic glycosylation, the maillard reaction and the aging process[J]. Journal of Gerontology, 1990,45(4) : 105-111. |
[43] |
Jeanmaire C, Danoux L, Pauly G. Glycation during human dermal intrinsic and actinic ageing: an in vivo and in vitro model study[J]. British Journal of Dermatology, 2015,145(1) : 10-18.
doi: 10.1046/j.1365-2133.2001.04275.x pmid: 11453901 |
[44] |
Iwai I, Ikuta K, Murayama K, et al. Change in optical properties of stratum corneum induced by protein carbonylation in vitro[J] . International Journal of Cosmetic Science, 2008,30:41-46.
doi: 10.1111/j.1468-2494.2008.00426.x pmid: 18377629 |
[45] |
Kobayashi Y, Iwai I, Akutsu N, et al. Increased carbonyl protein levels in the stratum corneum of the face during winter[J]. International Journal of Cosmetic Science, 2008,30:35-40.
doi: 10.1111/j.1468-2494.2008.00422.x pmid: 18377628 |
[46] |
Stefano T, Giada M, Andrea C, et al. Vitachelox: protection of the skin against blue light-induced protein carbonylation[J]. Cosmetics, 2019,6(3) : 49.
doi: 10.3390/cosmetics6030049 |
[47] |
Dalle-Donne I, Colombo G, Gornati R, et al. Protein carbonylation in human smokers and mammalian models of exposure to cigarette smoke: focus on redox proteomics studies[J]. Antioxidants & Redox Signaling, 2016. .
doi: 10.1089/ars.2020.8137 pmid: 32539532 |
[48] |
Piao M J, Ahn M J, Kang K A, et al. Particulate matter 2.5 damages skin cells by inducing oxidative stress, subcellular organelle dysfunction, apoptosis [J]. Archives of Toxicology, 2018. https://doi.org/10.1007/s00204-018-2197-9.
doi: 10.1007/s00204-020-02802-6 pmid: 32632539 |
[49] | Peng G J, Guo Q Q. Whitening cosmetics science and technology [M]. Beijing: China Light Industry Press, 2019. |
[1] | 李宁, 李恩念, 陈红波, 程芳, 邹衡芳, 陈鸿鹏. 祛斑美白类化妆品功效成分的研究现状[J]. 日用化学工业(中英文), 2024, 54(1): 80-89. |
[2] | 韩雨迪, 金莉英, 孙熙浛, 林长青, 崔承弼. 人参红景天乳液的制作及其抗氧化、美白作用研究[J]. 日用化学工业(中英文), 2023, 53(6): 665-672. |
[3] | 杨小玉, 刘金俊, 刘蕾, 何聪芬, 毕永贤, 李昊. 黑色素的生成代谢机制及研究方法进展[J]. 日用化学工业(中英文), 2023, 53(10): 1194-1203. |
[4] | 钟美莹, 张浩, 黄琴, 唐文迪, 蓝爱玲. 基于表观遗传学的皮肤抗衰及相关化妆品的研究与发展[J]. 日用化学工业(中英文), 2023, 53(10): 1220-1226. |
[5] | 刘光荣,敢小双,太美灵,韩萍,阿吉艾克拜尔·艾萨,杜志云. 天山雪莲多糖外用对特异性皮炎小鼠的改善作用研究[J]. 日用化学工业, 2022, 52(7): 704-709. |
[6] | 严俊,王容,李泽桦,张丽媛,程巧鸳,颜琳琦. 祛斑美白类化妆品中6种功效成分的同时测定及使用情况分析[J]. 日用化学工业, 2022, 52(7): 791-796. |
[7] | 方婷欢,蒋晴,唐礼荣. 烟酰胺与茶多酚复配对抑制PIG1细胞黑色素的影响[J]. 日用化学工业, 2022, 52(6): 632-637. |
[8] | 王冬冬,孙倩茹,王子文,方嘉璇,李萌,王昌涛. 葡萄籽发酵液抗衰老及美白功效研究[J]. 日用化学工业, 2022, 52(5): 545-552. |
[9] | 吴亚妮,吕晓帆,王莹,唐寅. 苦水玫瑰精油对B16细胞中黑色素合成的影响及机制研究[J]. 日用化学工业, 2022, 52(3): 278-286. |
[10] | 李子宜,刘彦,张召,吴惠勤. 制备一种包埋木瓜蛋白酶生物膜材料并应用于美白护肤品[J]. 日用化学工业, 2022, 52(3): 294-301. |
[11] | 金佳颖,陈露,王欣之,刘睿,吴皓. 珍珠灵芝复配物美白功效与机理初步研究[J]. 日用化学工业, 2022, 52(2): 166-171. |
[12] | 查雨锋,黄加文,詹易,李婷,颜宏,吴德松. 白梅花提取物抗氧化及美白功效评价[J]. 日用化学工业, 2022, 52(2): 172-179. |
[13] | 赵胜男,郭苗苗,蔡孟浩,洪民华,吕智,安法梁. 发酵莲花花瓣美白功效提升及作用机制研究[J]. 日用化学工业(中英文), 2022, 52(10): 1029-1039. |
[14] | 何瑞源,王硕,韦桂丽,龚小妹,吴佩莹,缪剑华. 壮药菲牛蛭提取物的美白作用及其机制初探[J]. 日用化学工业, 2022, 52(1): 35-43. |
[15] | 薛婉婷,李丽,董银卯,郭苗苗. 美白功效评价现状及发展趋势[J]. 日用化学工业, 2021, 51(9): 890-896. |
|