日用化学工业(中英文) ›› 2025, Vol. 55 ›› Issue (7): 920-927.doi: 10.3969/j.issn.2097-2806.2025.07.013
收稿日期:
2024-06-25
修回日期:
2025-06-24
出版日期:
2025-07-22
发布日期:
2025-07-23
Xinyu Mao,Suzhen Yang,Yan Li*(),Tingting Han,Chunying Yuan,Kuankuan Gao
Received:
2024-06-25
Revised:
2025-06-24
Online:
2025-07-22
Published:
2025-07-23
Contact:
*E-mail: liyanjinin@126.com
摘要:
痤疮丙酸杆菌是一种革兰氏阳性兼性厌氧菌,是人体皮肤共生微生物组的一部分,它定植于身体的各个部位,包括面部、背部和胸部。痤疮丙酸杆菌被认为在寻常痤疮的病理生理学中起到重要作用,在近年研究中发现不同系统型的菌株与皮肤健康和不同的疾病类型相关。本文综述了痤疮丙酸杆菌的分类及目前的研究现状,总结了不同的皮肤类型下痤疮丙酸杆菌的存在状态,强调了在痤疮护理中使用抗生素产生的耐药性风险以及微生物群失衡的风险,讨论了新的痤疮护理方法,旨在为痤疮的护理和护肤品开发及其功效评价开辟新的思路,为皮肤微生态的研究提出新方向。
中图分类号:
毛欣宇, 杨素珍, 李燕, 韩婷婷, 袁春颖, 杲款款. 痤疮丙酸杆菌的研究进展及痤疮皮肤护理新方向[J]. 日用化学工业(中英文), 2025, 55(7): 920-927.
Xinyu Mao, Suzhen Yang, Yan Li, Tingting Han, Chunying Yuan, Kuankuan Gao. Research progress of Cutibacterium acnes and new direction of acne skin care[J]. China Surfactant Detergent & Cosmetics, 2025, 55(7): 920-927.
表1
C. acnes的分型方法及其与疾病状态的关联"
分型方法 | 系统型[ | RecA type | 核糖型[ | MLST4[ | MLST9[ | SLST[ |
---|---|---|---|---|---|---|
具体类型 | IA-1 | IA | RT1 | IA1(CC1) | I-1a (CC18) | A1-34 |
与疾病的关联 | 痤疮相关 | 痤疮相关 | 痤疮相关 | |||
具体类型 | IA-2 | IA | RT1 | IA1(CC3) | I-1a (CC3) | |
与疾病的关联 | 痤疮相关 | 痤疮相关 | ||||
具体类型 | IA-2 | IA | RT4、RT5 | IA1(CC3) | I-1a (CC3) | C1-5 |
与疾病的关联 | 痤疮相关 | 痤疮相关 | 痤疮相关 | |||
具体类型 | IB-1 | IB | RT8 | IA1(CC4) | I-1b | |
与疾病的关联 | 痤疮相关 | 痤疮相关 | ||||
具体类型 | IB-2 | IB | RT3 | IA2 | I-1a (CC28) | |
与疾病的关联 | 术后感染的眼内炎症 | 痤疮相关 | ||||
具体类型 | IB-3 | IB | RT1 | IB | I-2(CC36) | H1-8 |
与疾病的关联 | 医疗器械感染、组织相关 | |||||
具体类型 | IC | IA | RT5 | IC | G1 | |
与疾病的关联 | 痤疮相关 | 痤疮相关 | ||||
具体类型 | Ⅱ | Ⅱ | RT2 | Ⅱ | Ⅱ | K1-25 |
与疾病的关联 | 医疗器械感染、血液相关 | |||||
具体类型 | Ⅱ | Ⅱ | RT6 | Ⅱ(ST7) | Ⅱ | |
与疾病的关联 | 健康肌肤 | 医疗器械感染、血液相关 | ||||
具体类型 | Ⅲ | Ⅲ | Ⅲ | L1-10 | ||
与疾病的关联 | 健康肌肤、椎间盘感染 |
表2
关于痤疮的非抗生素治疗方法的研究"
非抗生素治疗 | 作用方式 | 痤疮的临床应用 | 对皮肤微生物组的影响 |
---|---|---|---|
维A酸类药物曲法罗汀(Trifarotene) 0.005%的乳膏 | 选择性RARγ激动剂,溶解粉刺、 抗炎和色素沉着 | FDA和EMA批准用于9岁以上患者的面部和躯干痤疮[ | 不会导致抗菌素耐药性 |
局部雄激素受体抑制类药物克拉司酮(Clascoterone)1%的乳膏 | 局部雄激素受体拮抗剂,阻断引起痤疮病变的关键驱动因素——二氢睾酮的局部效应 | FDA批准用于12岁及以上患者的痤疮[ | 不会导致抗菌素耐药性 |
口服螺内酯(Spironolactone) | 口服抗雄激素药物 | 用于成年女性的痤疮治疗[ | 不会导致抗菌素耐药性 |
光动力疗法(PDT) | 5-氨基乙酰丙酸介导的PDT(ALA-PDT) | 用于治疗重度痤疮,且具有良好的耐受性[ | 有助于增强痤疮患者的α多样 性[ |
30%超分子水杨酸(SSA) | 一种改良的水杨酸,进行焕肤 | 用于治疗中度至重度痤疮[ | 通过增加α和β多样性指数,降 低葡萄球菌(Staphylococcus)、罗尔斯顿菌(Ralstonia)、 链球菌(Streptococcus)的相对丰度,使得总体菌属分布趋于健康状态 |
桃金娘素(Myrtacine?) | 一种含有桃金娘酮的天然活 性剂 | 可用于痤疮的辅助治疗[ | 可以靶向针对生物膜,并克服对抗生素的耐药性增加并恢复平衡的皮肤微生物组 |
[1] |
Byrd A L, Belkaid Y, Segre J A. The human skin microbiome[J]. Nat. Rev. Microbiol., 2018, 16 (3) : 143-155.
doi: 10.1038/nrmicro.2017.157 pmid: 29332945 |
[2] | Kelhala H L, Aho V, Fyhrquist N, et al. Isotretinoin and lymecycline treatments modify the skin microbiota in acne[J]. Exp. Dermatol., 2018, 27 (1) : 30-36. |
[3] | Scholz C, Kilian M. The natural history of cutaneous propionibacteria, and reclassification of selected species within the genus Propionibacterium to the proposed novel genera Acidipropionibacterium gen. nov., Cutibacterium gen. nov. and Pseudopropionibacterium gen. nov[J]. Int. J. Syst. Evol. Microbiol., 2016, 66 (11) : 4422-4432. |
[4] | Akaza N, Takasaki K, Nishiyama E, et al. The microbiome in comedonal contents of inflammatory acne vulgaris iscomposed of an oergrowth of Cutibacterium spp. and other cutaneous microorganisms[J]. Clin. Cosmet. Investig. Dermatol., 2022, 15: 2003-2012. |
[5] |
Schimel A M, Miller D, Flynn H J. Endophthalmitis isolates and antibiotic susceptibilities: a 10-year review of culture-proven cases[J]. Am. J. Ophthalmol., 2013, 156 (1) : 50-52.
doi: 10.1016/j.ajo.2013.01.027 pmid: 23540710 |
[6] | Rollason J, McDowell A, Albert H B, et al. Genotypic and antimicrobial characterisation of Propionibacterium acnes isolates from surgically excised lumbar disc herniations[J]. Biomed. Res. Int., 2013: 530382. |
[7] | Aubin G G, Portillo M E, Trampuz A, et al. Propionibacterium acnes, an emerging pathogen: from acne to implant-infections, from phylotype to resistance[J]. Med. Mal. Infect., 2014, 44 (6) : 241-250. |
[8] |
Fitz-Gibbon S, Tomida S, Chiu B H, et al. Propionibacterium acnes strain populations in the human skin microbiome associated with acne[J]. J. Invest. Dermatol., 2013, 133 (9) : 2152-2160.
doi: 10.1038/jid.2013.21 pmid: 23337890 |
[9] |
Tomida S, Nguyen L, Chiu B H, et al. Pan-genome and comparative genome analyses of propionibacterium acnes reveal its genomic diversity in the healthy and diseased human skin microbiome[J]. mBio., 2013, 4 (3) : 3-13.
doi: 10.1128/mBio.00003-13 pmid: 23631911 |
[10] | McDowell A, Nagy I, Magyari M, et al. The opportunistic pathogen Propionibacterium acnes: insights into typing, human disease, clonal diversification and CAMP factor evolution[J]. PLoS One, 2013, 8 (9) : e70897. |
[11] | Lomholt H B, Kilian M. Population genetic analysis of Propionibacterium acnes identifies a subpopulation and epidemic clones associated with acne[J]. PLoS One, 2010, 5 (8) : e12277. |
[12] | Scholz C F, Jensen A, Lomholt H B, et al. A novel high-resolution single locus sequence typing scheme for mixed populations of Propionibacterium acnes in vivo[J]. PLoS One, 2014, 9 (8) : e104199. |
[13] |
Huang C, Zhuo F, Han B, et al. The updates and implications of cutaneous microbiota in acne[J]. Cell Biosci., 2023, 13 (1) : 113.
doi: 10.1186/s13578-023-01072-w pmid: 37344849 |
[14] |
Loss M, Thompson K G, Agostinho-Hunt A, et al. Noninflammatory comedones have greater diversity in microbiome and are more prone to biofilm formation than inflammatory lesions of acne vulgaris[J]. Int. J. Dermatol., 2021, 60 (5) : 589-596.
doi: 10.1111/ijd.15308 pmid: 33615460 |
[15] | Bolla B S, Erdei L, Urban E, et al. Cutibacterium acnes regulates the epidermal barrier properties of HPV-KER human immortalized keratinocyte cultures[J]. Sci. Rep., 2020, 10 (1) : 12815. |
[16] |
Cao K, Chen G, Chen W, et al. Formalin-killed Propionibacterium acnes activates the aryl hydrocarbon receptor and modifies differentiation of SZ95 sebocytes in vitro[J]. Eur. J. Dermatol., 2021, 31 (1) : 32-40.
doi: 10.1684/ejd.2021.3964 pmid: 33648912 |
[17] | Yu Y, Champer J, Agak G W, et al. Different Propionibacterium acnes phylotypes induce distinct immune responses and express unique surface and secreted proteomes[J]. J. Invest. Dermatol., 2016, 136 (11) : 2221-2228. |
[18] |
McGinley K J, Webster G F, Ruggieri M R, et al. Regional variations in density of cutaneous propionibacteria: correlation of Propionibacterium acnes populations with sebaceous secretion[J]. J. Clin. Microbiol., 1980, 12 (5) : 672-675.
doi: 10.1128/jcm.12.5.672-675.1980 pmid: 7276142 |
[19] |
Zheng Y, Hunt R L, Villaruz A E, et al. Commensal Staphylococcus epidermidis contributes to skin barrier homeostasis by generating protective ceramides[J]. Cell Host Microbe., 2022, 30 (3) : 301-313.
doi: 10.1016/j.chom.2022.01.004 pmid: 35123653 |
[20] | Almoughrabie S, Cau L, Cavagnero K, et al. Commensal Cutibacterium acnes induce epidermal lipid synthesis important for skin barrier function[J]. Sci. Adv., 2023, 9 (33) : g6262. |
[21] |
Higaki S, Kitagawa T, Kagoura M, et al. Correlation between Propionibacterium acnes biotypes, lipase activity and rash degree in acne patients[J]. J. Dermatol., 2000, 27 (8) : 519-522.
pmid: 10989576 |
[22] | Johnson T, Kang D, Barnard E, et al. Strain-Level differences in Porphyrin production and regulation in Propionibacterium acnes elucidate disease associations[J]. mSphere., 2016, 1 (1). |
[23] | Nazipi S, Stodkilde-Jorgensen K, Scavenius C, et al. The skin bacterium Propionibacterium acnes employs two variants of hyaluronate lyase with distinct properties[J]. Microorganisms, 2017, 5 (3). |
[24] | Dreno B, Pecastaings S, Corvec S, et al. Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: a brief look at the latest updates[J]. J. Eur. Acad. Dermatol. Venereol., 2018, 32 Suppl 2: 5-14. |
[25] | Shu M, Kuo S, Wang Y, et al. Porphyrin metabolisms in human skin commensal Propionibacterium acnes bacteria: potential application to monitor human radiation risk[J]. Curr. Med. Chem., 2013, 20 (4) : 562-568. |
[26] | Fourniere M, Latire T, Souak D, et al. Staphylococcus epidermidis and Cutibacterium acnes: two major sentinels of skin microbiota and the influence of cosmetics[J]. Microorganisms, 2020, 8 (11). |
[27] |
Nakamura K, O’Neill A M, Williams M R, et al. Short chain fatty acids produced by Cutibacterium acnes inhibit biofilm formation by Staphylococcus epidermidis [J]. Sci. Rep., 2020, 10 (1) : 21237.
doi: 10.1038/s41598-020-77790-9 pmid: 33277548 |
[28] | Luo Y, Song Y. Mechanism of antimicrobial peptides: antimicrobial, anti-Inflammatory and antibiofilm activities[J]. Int. J. Mol. Sci., 2021, 22 (21). |
[29] | Howard B, Bascom C C, Hu P, et al. Aging-associated changes in the adult human skin microbiome and the host factors that affect skin microbiome composition[J]. J. Invest. Dermatol., 2022, 142 (7) : 1934-1946. |
[30] |
Allhorn M, Arve S, Bruggemann H, et al. A novel enzyme with antioxidant capacity produced by the ubiquitous skin colonizer Propionibacterium acnes [J]. Sci. Rep., 2016, 6: 36412.
doi: 10.1038/srep36412 pmid: 27805044 |
[31] |
Andersson T, Erturk B G, Saleh K, et al. Common skin bacteria protect their host from oxidative stress through secreted antioxidant RoxP[J]. Sci. Rep., 2019, 9 (1) : 3596.
doi: 10.1038/s41598-019-40471-3 pmid: 30837648 |
[32] |
Russell-Goldman E, Murphy G F. The pathobiology of skin aging: new insights into an old dilemma[J]. Am. J. Pathol., 2020, 190 (7) : 1356-1369.
doi: S0002-9440(20)30142-5 pmid: 32246919 |
[33] | Kelhl H L, Aho V T E, Fyhrquist N, et al. Isotretinoin and lymecycline treatments modify the skin microbiota in acne[J]. Exp. Dermatol., 2018 (1). |
[34] |
Chien A L, Tsai J, Leung S, et al. Association of systemic antibiotic treatment of acne with skin microbiota characteristics[J]. JAMA. Dermatol., 2019, 155 (4) : 425-434.
doi: 10.1001/jamadermatol.2018.5221 pmid: 30758497 |
[35] |
Margolis D J, Bowe W P, Hoffstad O, et al. Antibiotic treatment of acne may be associated with upper respiratory tract infections[J]. Arch. Dermatol., 2005, 141 (9) : 1132-1136.
pmid: 16172310 |
[36] |
Scott L J. Trifarotene: first approval[J]. Drugs., 2019, 79 (17) : 1905-1909.
doi: 10.1007/s40265-019-01218-6 pmid: 31713811 |
[37] |
Dhillon S. Clascoterone: first approval[J]. Drugs., 2020, 80 (16) : 1745-1750.
doi: 10.1007/s40265-020-01417-6 pmid: 33030710 |
[38] | Santer M, Lawrence M, Renz S, et al. Effectiveness of spironolactone for women with acne vulgaris (SAFA) in england and wales: pragmatic, multicentre, phase 3, double blind, randomised controlled trial[J]. BMJ, 2023, 381: e74349. |
[39] | Pollock B, Turner D, Stringer M R, et al. Topical aminolaevulinic acid-photodynamic therapy for the treatment of acne vulgaris: a study of clinical efficacy and mechanism of action[J]. Br. J. Dermatol., 2004, 151 (3) : 616-622. |
[40] | Guo Y, Zeng M, Yuan Y, et al. Photodynamic therapy treats acne by altering the composition of the skin microbiota[J]. Skin. Res. Technol., 2023, 29 (1) : e13269. |
[41] | Zhang L, Shao X, Chen Y, et al. 30% supramolecular salicylic acid peels effectively treats acne vulgaris and reduces facial sebum[J]. J. Cosmet. Dermatol., 2022, 21 (8) : 3398-3405. |
[42] |
Feuillolay C, Pecastaings S, Le Gac C, et al. A Myrtus communis extract enriched in myrtucummulones and ursolic acid reduces resistance of Propionibacterium acnes biofilms to antibiotics used in acne vulgaris[J]. Phytomedicine, 2016, 23 (3) : 307-315.
doi: 10.1016/j.phymed.2015.11.016 pmid: 26969384 |
[43] |
Cogen A L, Yamasaki K, Sanchez K M, et al. Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin[J]. J. Invest. Dermatol., 2010, 130 (1) : 192-200.
doi: 10.1038/jid.2009.243 pmid: 19710683 |
[44] | O’Neill A M, Nakatsuji T, Hayachi A, et al. Identification of a human skin commensal bacterium that selectively kills Cutibacterium acnes[J]. J. Invest. Dermatol., 2020, 140 (8) : 1619-1628. |
[45] |
Gueniche A, Philippe D, Bastien P, et al. Randomised double-blind placebo-controlled study of the effect of Lactobacillus paracasei NCC 2461 on skin reactivity[J]. Benef. Microbes., 2014, 5 (2) : 137-145.
doi: 10.3920/BM2013.0001 pmid: 24322879 |
[46] |
Dagnelie M A, Corvec S, Saint-Jean M, et al. Cutibacterium acnes phylotypes diversity loss: a trigger for skin inflammatory process[J]. J. Eur. Acad. Dermatol. Venereol., 2019, 33 (12) : 2340-2348.
doi: 10.1111/jdv.15795 pmid: 31299116 |
[47] | Farfan J, Gonzalez J M, Vives M. The immunomodulatory potential of phage therapy to treat acne: a review on bacterial lysis and immunomodulation[J]. PeerJ, 2022, 10: e13553. |
[48] |
Rimon A, Rakov C, Lerer V, et al. Topical phage therapy in a mouse model of Cutibacterium acnes-induced acne-like lesions[J]. Nat. Commun., 2023, 14 (1) : 1005.
doi: 10.1038/s41467-023-36694-8 pmid: 36813793 |
[1] | 邵丽, 岳佳威, 李燕, 李陶, 马来记, 杨素珍. 4种低聚糖对健康皮肤源痤疮丙酸杆菌CCSM0331生长特性的影响[J]. 日用化学工业(中英文), 2025, 55(7): 895-901. |
[2] | 刘娟,余思宜,翟文丽,李国庆,李学涛,刘继涛. 大麻二酚的抗炎和抑菌活性研究[J]. 日用化学工业, 2021, 51(7): 655-661. |
[3] | 贺改英,唐靖惠,孙娅楠,马淑骅,杨伟峰,王毅. 双光子成像技术在痤疮丙酸杆菌引起痤疮表皮炎症中的应用[J]. 日用化学工业, 2020, 50(10): 704-710. |
[4] | 贺改英,陈迪,沈丽. 中草药祛痘复方对痤疮致病菌和外泌酶的影响[J]. 日用化学工业, 2018, 48(7): 403-407. |
[5] | 王玥, 郭苗苗, 施雁勤, 潘仙华, 卢艳花, 曹平. 广藿香精油抗炎祛痘功效研究[J]. 日用化学工业, 2017, 47(5): 272-276. |
|