日用化学工业 ›› 2021, Vol. 51 ›› Issue (11): 1109-1117.doi: 10.3969/j.issn.1001-1803.2021.11.011
王朋辉1,王伟贤1,2,杨涛1,曾晖1,2,*(),芮泽宝1,*(
),李东华3,黄平3
收稿日期:
2021-03-23
修回日期:
2021-10-29
出版日期:
2021-11-22
发布日期:
2021-11-19
通讯作者:
曾晖,芮泽宝
基金资助:
Wang Penghui1,Wang Weixian1,2,Yang Tao1,Zeng Hui1,2,*(),Rui Zebao1,*(
),Li Donghua3,Huang Ping3
Received:
2021-03-23
Revised:
2021-10-29
Online:
2021-11-22
Published:
2021-11-19
Contact:
Hui Zeng,Zebao Rui
摘要:
碱性蛋白酶是液体洗涤剂中使用量最大的一类酶制剂,它具有广泛的肽键水解选择性,能够降解多种蛋白类污垢。不同于生物体内环境,碱性蛋白酶在液体洗涤剂中因受到各种失活因素干扰而变性,降低了去污效率,增加了使用成本。探究在复杂多变液体洗涤剂环境中影响蛋白酶洗涤性能的影响因素是提升现有蛋白酶洗涤性能的前提。文章将从碱性蛋白酶的自溶失活,螯合剂、漂白剂以及表面活性剂对碱性蛋白酶的作用四个方面揭示碱性蛋白酶在液体洗涤剂中失活的主要原因,重点讨论了表面活性剂与碱性蛋白酶的相互作用,并对未来液体洗涤剂配方中的表面活性剂种类及复配技术的发展进行了展望。
中图分类号:
王朋辉,王伟贤,杨涛,曾晖,芮泽宝,李东华,黄平. 碱性蛋白酶洗涤性能的影响因素[J]. 日用化学工业, 2021, 51(11): 1109-1117.
Wang Penghui,Wang Weixian,Yang Tao,Zeng Hui,Rui Zebao,Li Donghua,Huang Ping. Influencing factors on washing performance of alkaline protease in liquid detergent[J]. China Surfactant Detergent & Cosmetics, 2021, 51(11): 1109-1117.
表 1
常用于洗涤剂中的螯合剂种类及螯合能力"
代表性螯合剂 | 类型 | 蛋白酶 | 与钙离子的结合度 | 参考文献 |
---|---|---|---|---|
EDTA | 有机型 | Bacillus mojavensis A21 protease | 较强 | [ |
柠檬酸盐 | 有机型 | Bacillus lentus | 较弱 | [ |
硼酸盐 | 无机型 | Bacillus cereus BG1 protease | 一般 | [ |
N-酰基ED3A | 有机型 | Subtilisin Carlsberg | 较强 | [ |
NTA(氨三乙酸) | 有机型 | Subtilisin Carlsberg | 较弱 | [ |
N-羟乙基亚胺二乙酸 | 有机型 | Subtilisin Carlsberg | 很强 | [ |
聚丙烯酸 | 高分子型 | Subtilisin Carlsberg | 很强 | [ |
马来酸-丙烯酸共聚物 | 高分子型 | Subtilisin Carlsberg | 很强 | [ |
表 2
常用于洗涤剂中的表面活性剂种类及其对蛋白酶稳定性的影响"
表面活性剂 | 种类 | 蛋白酶 | 稳定性的影响 | 参考文献 |
---|---|---|---|---|
SDS | 阴离子型 | Trypsin | 很强 | [ |
LAS | 阴离子型 | Subtilisin Carlsberg | 很强 | [ |
AES | 阴离子型 | Purafect Prime | 一般 | [ |
Trion X-100 | 非离子型 | Bacillus invictae | 很弱 | [ |
Twenn-80 | 非离子型 | Pancreatic proteases | 很弱 | [ |
APEs | 非离子型 | Subtilisin Carlsberg | 较弱 | [ |
AEO | 非离子型 | Bacillus sp. EMB9 protease | 较弱 | [ |
CTAB | 阳离子型 | Bacillus nealsonii PN-11 protease | 较强 | [ |
甜菜碱类 | 两性离子型 | α-chymotrypsin | 一般 | [ |
[1] |
Mukherjee J, Majumder A B, Gupta M N. Adding an appropriate amino acid during crosslinking results in more stable crosslinked enzyme aggregates[J]. Analytical Biochemistry, 2016, 507:27-32.
doi: 10.1016/j.ab.2016.05.012 pmid: 27237371 |
[2] | Wang J, Zhang J, Zhang Y. Study on the behavior of alkaline protease at air-water interface[J]. China Surfactant Detergent & Cosmetics, 2015, 45(9): 490-494. |
[3] |
Stoner M R, Dale D A, Gualfetti P J, et al. Protease autolysis in heavy-duty liquid detergent formulations: effects of thermodynamic stabilizers and protease inhibitors[J]. Enzyme Microb Technol, 2004, 34(2): 114-125.
doi: 10.1016/j.enzmictec.2003.09.008 |
[4] |
Han X Q, Damodaran S. Stability of protease Q against autolysis and in sodium dodecyl sulfate and urea solutions[J]. Biochemical and Biophysical Research Communications, 1997, 240(3): 839-843.
pmid: 9398655 |
[5] |
Mechri S, Bouacem K, Jaouadi N Z, et al. Identification of a novel protease from the thermophilic Anoxybacillus kamchatkensis M1V and its application as laundry detergent additive[J]. Extremophiles, 2019, 23(6): 687-706.
doi: 10.1007/s00792-019-01123-6 |
[6] |
Ozturk N C, Kazan D, Denizci A A, et al. The influence of copper on alkaline protease stability toward autolysis and thermal inactivation[J]. Engineering in Life Sciences, 2012, 12(6): 662-671.
doi: 10.1002/elsc.v12.6 |
[7] |
Laszlo K, Szava A, Simon L M. Stabilization of various alpha-chymotrypsin forms in aqueous-organic media by additives[J]. Journal of Molecular Catalysis B: Enzymatic, 2001, 16(3/4): 141-146.
doi: 10.1016/S1381-1177(01)00053-4 |
[8] |
Dorau R, Gorbe T, Humble M S. Improved enantioselectivity of subtilisin carlsberg towards secondary alcohols by protein engineering[J]. Chembiochem, 2018, 19(4): 338-346.
doi: 10.1002/cbic.v19.4 |
[9] |
Russell D, Oldham N J, Davis B G. Site-selective chemical protein glycosylation protects from autolysis and proteolytic degradation[J]. Carbohydrate Research, 2009, 344(12): 1508-1514.
doi: 10.1016/j.carres.2009.06.033 pmid: 19608158 |
[10] |
Yu Y, Zhao J, Bayly A E. Development of surfactants and builders in detergent formulations[J]. Chinese Journal of Chemical Engineering, 2008, 16(4): 517-527.
doi: 10.1016/S1004-9541(08)60115-9 |
[11] |
Koohsaryan E, Anbia M, Maghsoodlu M. Application of zeolites as non‐phosphate detergent builders: A review[J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104287.
doi: 10.1016/j.jece.2020.104287 |
[12] |
Gotoh K, Horibe K, Mei Y, et al. Effects of water hardness on textile detergency performance in aqueous cleaning systems[J]. Journal of Oleo Science, 2016, 65(2): 123-133.
doi: 10.5650/jos.ess15168 |
[13] |
Sharma A K, Kikani B A, Singh S P. Biochemical, thermodynamic and structural characteristics of a biotechnologically compatible alkaline protease from a haloalkaliphilic, Nocardiopsis dassonvillei OK-18[J]. International Journal of Biological Macromolecules, 2020, 153:680-696.
doi: S0141-8130(20)31164-8 pmid: 32145232 |
[14] |
Ksiazek M, Karim A Y, Bryzek D, et al. Mirolase, a novel subtilisin-like serine protease from the periodontopathogen Tannerella forsythia[J]. Biological Chemistry, 2015, 396(3): 261-275.
doi: 10.1515/hsz-2014-0256 |
[15] | Li J, Zhang J, Zhao Y X. Progress in research work field with respect to effects of metal ions on protease[J]. China Surfactant Detergent & Cosmetics, 2017, 47(6): 345-351. |
[16] |
Zhang J, Wang J, Zhao Y, et al. Study on the interaction between calcium ions and alkaline protease of bacillus[J]. International Journal of Biological Macromolecules, 2019, 124:121-130.
doi: S0141-8130(18)34153-9 pmid: 30471394 |
[17] |
Gohel S D, Singh S P. Thermodynamics of a Ca2+-dependent highly thermostable alkaline protease from a haloalkliphilic actinomycete[J]. International Journal of Biological Macromolecules, 2015, 72:421-429.
doi: 10.1016/j.ijbiomac.2014.08.008 pmid: 25150113 |
[18] |
Lund H, Kaasgaard S G, Skagerlind P, et al. Protease and amylase stability in the presence of chelators used in laundry detergent applications: correlation between chelator properties and enzyme stability in liquid detergents[J]. Journal of Surfactants and Detergents, 2012, 15(3): 265-276.
doi: 10.1007/s11743-011-1318-8 |
[19] |
Bakhtiar S, Andersson M M, Gessesse A, et al. Stability characteristics of a calcium-independent alkaline protease from Nesterenkonia sp.[J]. Enzyme Microb Technol, 2003, 32(5): 525-531.
doi: 10.1016/S0141-0229(02)00336-8 |
[20] |
Veltman O R, Vriend G, Van Den Burg B, et al. Engineering thermolysin-like proteases whose stability is largely independent of calcium[J]. FEBS Letters, 1997, 405(2): 241-244.
pmid: 9089298 |
[21] |
Haddar A, BougateF A, Agrebi R, et al. A novel surfactant-stable alkaline serine-protease from a newly isolated Bacillus mojavensis A21. Purification and characterization[J]. Process Biochemistry, 2009, 44(1): 29-35.
doi: 10.1016/j.procbio.2008.09.003 |
[22] |
Ghorbel B, SellamI-Kamoun A, Nasri M. Stability studies of protease from Bacillus cereus BG1[J]. Enzyme Microb Technol, 2003, 32(5): 513-518.
doi: 10.1016/S0141-0229(03)00004-8 |
[23] | Crudden J J, Parker B A, Lazzaro J V. The properties and applications of N-acyl ED3A chelating surfactants[J]. Industrial Applications of Surfactants IV, 1999: 130-150. |
[24] | Rischmiller M S, Smith K R, Peters S B, et al. Enzyme-containing detergent and presoak composition and methods of using[M]. Canada: Thomson Reuters, 2018: 350-351. |
[25] |
Grune T, Klotz L O, Gieche J, et al. Protein oxidation and proteolysis by the nonradical oxidants singlet oxygen or peroxynitrite[J]. Free Radical Biology and Medicine, 2001, 30(11): 1243-1253.
pmid: 11368922 |
[26] |
Estévez M. Protein carbonyls in meat systems: A review[J]. Meat Science, 2011, 89(3): 259-279.
doi: 10.1016/j.meatsci.2011.04.025 pmid: 21621336 |
[27] |
Xiong Y L, Blanchard S P, Ooizumi T, et al. Hydroxyl radical and ferryl-generating systems promote gel network formation of myofibrillar protein[J]. Journal of Food Science, 2010, 75(2): 215-221.
doi: 10.1111/j.1750-3841.2009.01511.x |
[28] |
Zhang B, Yang Y, Luo B, et al. Effects of different foods on blood glucose and lipid in type 2 diabetes mellitus in a rat model[J]. Journal of Surgical Research, 2018, 229:254-261.
doi: S0022-4804(18)30128-8 pmid: 29936998 |
[29] |
Hammami A, Hamdi M, Abdelhedi O, et al. Surfactant- and oxidant-stable alkaline proteases from Bacillus invictae: Characterization and potential applications in chitin extraction and as a detergent additive[J]. International Journal of Biological Macromolecules, 2017, 96:272-281.
doi: S0141-8130(16)32119-5 pmid: 27988295 |
[30] |
Von Der Osten C, Branner S, Hastrup S, et al. Protein engineering of subtilisins to improve stability in detergent formulations[J]. Journal of Biotechnology, 1993, 28(1): 55-68.
pmid: 7763525 |
[31] |
Cheng K C, Khoo Z S, Lo N W, et al. Design and performance optimisation of detergent product containing binary mixture of anionic-nonionic surfactants[J]. Heliyon, 2020, 6(5): e03861.
doi: 10.1016/j.heliyon.2020.e03861 |
[32] |
Otzen D. Protein-surfactant interactions: A tale of many states[J]. Biochimica Et Biophysica Acta-Proteins and Proteomics, 2011, 1814(5): 562-591.
doi: 10.1016/j.bbapap.2011.03.003 |
[33] |
Holmberg K. Interactions between surfactants and hydrolytic enzymes[J]. Colloid Surf B-Biointerfaces, 2018, 168:169-177.
doi: 10.1016/j.colsurfb.2017.12.002 |
[34] | Wu M N, Li L, Xia Y H, et al. Improvement of proteases stability in liquid laundry detergent[J]. China Surfactant Detergent & Cosmetics, 2019, 49(2): 103-107. |
[35] |
Ghosh S. Interaction of trypsin with sodium dodecyl sulfate in aqueous medium: A conformational view[J]. Colloid Surf B-Biointerfaces, 2008, 66(2): 178-186.
doi: 10.1016/j.colsurfb.2008.06.011 |
[36] |
Russell G L, Britton L N. Use of certain alcohol ethoxylates to maintain protease stability in the presence of anionic surfactants[J]. Journal of Surfactants and Detergents, 2002, 5(1): 5-10.
doi: 10.1007/s11743-002-0198-9 |
[37] |
Guncheva M, Stippler E. Effect of four commonly used dissolution media surfactants on pancreatin proteolytic activity[J]. AAPS PharmSciTech, 2017, 18(4): 1402-1407.
doi: 10.1208/s12249-016-0618-8 pmid: 27586964 |
[38] |
Sinha R, Khare S K. Characterization of detergent compatible protease of a halophilic Bacillus sp. EMB9: Differential role of metal ions in stability and activity[J]. Bioresource Technology, 2013, 145:357-361.
doi: 10.1016/j.biortech.2012.11.024 |
[39] |
David A, Singh Chauhan P, Kumar A, et al. Coproduction of protease and mannanase from Bacillus nealsonii PN-11 in solid state fermentation and their combined application as detergent additives[J]. International Journal of Biological Macromolecules, 2018, 108:1176-1184.
doi: 10.1016/j.ijbiomac.2017.09.037 |
[40] |
Verma S K, Ghosh K K, Verma R, et al. Surface, conformational and catalytic activity approach of ot-chymotrypsin and trypsin in micellar media[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 470:188-193.
doi: 10.1016/j.colsurfa.2015.01.070 |
[41] |
Raval V H, Pillai S, Rawal C M, et al. Biochemical and structural characterization of a detergent-stable serine alkaline protease from seawater haloalkaliphilic bacteria[J]. Process Biochemistry, 2014, 49(6): 955-962.
doi: 10.1016/j.procbio.2014.03.014 |
[42] |
Giehm L, Oliveira C L P, Christiansen G, et al. SDS-induced fibrillation of α-synuclein: an alternative fibrillation pathway[J]. Journal of Molecular Biology, 2010, 401(1): 115-133.
doi: 10.1016/j.jmb.2010.05.060 pmid: 20540950 |
[43] |
Andersen K K, Oliveira C L, Larsen K L, et al. The role of decorated SDS micelles in sub-CMC protein denaturation and association[J]. Journal of Molecular Biology, 2009, 391(1): 207-226.
doi: 10.1016/j.jmb.2009.06.019 pmid: 19523473 |
[44] |
Otzen D E, Oliveberg M. Burst-phase expansion of native protein prior to global unfolding in SDS11Edited by A. R. Fersht[J]. Journal of Molecular Biology, 2002, 315(5): 1231-1240.
doi: 10.1006/jmbi.2001.5300 |
[45] |
Chakraborty A, Basak S. Effect of surfactants on casein structure: A spectroscopic study[J]. Colloid Surf B: Biointerfaces, 2008, 63(1): 83-90.
doi: 10.1016/j.colsurfb.2007.11.005 |
[46] |
Turro N J, Lei X G, Ananthapadmanabhan K P, et al. Spectroscopic probe analysis of protein-surfactant interactions: the BSA/SDS system[J]. Langmuir, 1995, 11(7): 2525-2233.
doi: 10.1021/la00007a035 |
[47] |
Reynolds J A, Tanford C. The gross conformation of protein-sodium dodecyl sulfate complexes[J]. The Journal of Biological Chemistry, 1970, 245(19): 5161-5165.
doi: 10.1016/S0021-9258(18)62831-5 |
[48] |
Shirahama K. Free-boundary electrophoresis of sodium dodecyl sulfate-protein polypeptide comlexes with special reference to SDS-polyacrylamide gel electrophoresis[J]. J Biochem, 1974, 75(2): 309-328.
pmid: 4837445 |
[1] | 张志升, 沈产量, 李建勋, 刘延强, 韩薇薇, 董三宝. 甜菜碱/AOS/Gemini季铵盐三元复合型泡排剂的研制与性能评价[J]. 日用化学工业(中英文), 2024, 54(3): 239-249. |
[2] | 李国峰, 刘凯楠, 莫文龙, 马腾. 页岩油藏渗吸驱油剂体系性能评价[J]. 日用化学工业(中英文), 2024, 54(3): 250-258. |
[3] | 侯仕达, 王志飞, 王亚魁, 李俊, 姜亚洁, 耿涛. 多阳离子位点季铵盐与AEC复配体系的应用性能研究[J]. 日用化学工业(中英文), 2024, 54(2): 131-138. |
[4] | 张红梅, 张永民. [芥酰胺苯甲酸][胆碱]离子液体表面活性剂的合成及性能研究[J]. 日用化学工业(中英文), 2024, 54(2): 149-155. |
[5] | 刘佩, 潘婷, 裴晓梅, 宋冰蕾, 蒋建中, 崔正刚, Bernard P. Binks. 非离子-阴离子Bola型表面活性剂和纳米SiO2颗粒协同稳定的双重响应型O/W乳状液[J]. 日用化学工业(中英文), 2024, 54(1): 1-15. |
[6] | 艾浩康, 姜亚洁, 王亚魁, 张璐, 耿涛. 硬脂酸酯双子季铵盐的合成及性能研究[J]. 日用化学工业(中英文), 2024, 54(1): 16-23. |
[7] | 张婉萍, 林延忠, 张倩洁, 张冬梅, 蒋汶. Ca2+介导的月桂酰甲基牛磺酸钠相行为研究[J]. 日用化学工业(中英文), 2024, 54(1): 32-37. |
[8] | 常世腾, 蔡小军, 郑延成, 刘雪瑾, 易晓, 蒋筑阳. 琥珀酸酯磺酸盐物化特性及其与甜菜碱复配体系界面性能[J]. 日用化学工业(中英文), 2023, 53(9): 989-998. |
[9] | 徐德荣,连威,熊金钊,康万利. 致密油藏表面活性剂渗吸影响因素研究[J]. 日用化学工业(中英文), 2023, 53(8): 857-864. |
[10] | 牛奇奇,吕其超,董朝霞,张风帆,王洪勃. 含蠕虫胶束的泡沫体系的性能研究进展[J]. 日用化学工业(中英文), 2023, 53(8): 915-924. |
[11] | 王佳锐,魏孝承,张春雪,陈昢圳,郑向群,王强. 水环境样品中表面活性剂检测方法研究进展[J]. 日用化学工业(中英文), 2023, 53(8): 925-934. |
[12] | 强学峰, 张莉, 郑斌, 侯倩倩, 燕坤. 无机盐KCl对离子型表面活性剂泡沫演化规律研究[J]. 日用化学工业(中英文), 2023, 53(7): 733-741. |
[13] | 邢环宇, 贾丽华, 赵振龙, 杨瑞, 郭祥峰. 含萘酰亚胺和烷基疏水基的新型表面活性剂合成及性能[J]. 日用化学工业(中英文), 2023, 53(7): 742-747. |
[14] | 付江鹏, 杜金梅, 苗大刚, 肖国威, 蒋阳, 许长海. 表面活性剂在活化氧漂体系去除纺织品有色污渍中的作用[J]. 日用化学工业(中英文), 2023, 53(5): 511-516. |
[15] | 卓文珊, 冯顺卿, 唐建锋. 高效液相色谱法-蒸发光散射检测器测定表面活性剂中月桂酰基甘氨酸钠含量[J]. 日用化学工业(中英文), 2023, 53(2): 220-225. |
|