日用化学工业(中英文) ›› 2025, Vol. 55 ›› Issue (6): 767-778.doi: 10.3969/j.issn.2097-2806.2025.06.011
收稿日期:
2024-09-14
修回日期:
2025-05-27
出版日期:
2025-06-22
发布日期:
2025-07-01
Zhengang Peng*(),Zhengwan Huang,Zhe Liu,Xiaoxiao Lin
Received:
2024-09-14
Revised:
2025-05-27
Online:
2025-06-22
Published:
2025-07-01
Contact:
E-mail: 摘要:
通过代谢组学和网络药理学来研究沉香叶提取物的防脱机制。利用代谢组学研究沉香叶提取物中活性物种类,通过网络药理学来研究活性物的防脱机理,并利用分子对接技术来验证。利用代谢组学方法从沉香叶提取物中鉴定出572个活性物,活性物对应的靶点有1 447个,和脱发相关的靶点有492个,二者共有靶点有88个。通过构建共有靶点和活性物之间的网络确定了20个核心活性物,包括香草酸、绒毛素、咖啡酸和芹菜素等。对88个共同靶点进行PPI网络分析筛选出五个关键靶点:TNF,TP53,IL6,PPARG和EGFR。GO和KEGG通路富集分析表明参与炎症、激素平衡、细胞生长、增殖、凋亡和氧化应激。分子对接研究证实了核心活性化合物与关键靶点之间具有高结合力。对这些核心化合物的药物相似性评估表明它们有望作为潜在的脱发治疗药物。这项研究阐明了沉香叶治疗脱发的复杂分子机制,为后续在护发产品中的应用提供参考。
中图分类号:
彭振刚, 黄政皖, 刘喆, 蔺虓霄. 基于代谢组学和网络药理学研究沉香叶提取物的防脱机制[J]. 日用化学工业(中英文), 2025, 55(6): 767-778.
Zhengang Peng, Zhengwan Huang, Zhe Liu, Xiaoxiao Lin. Studies on the anti-hair loss mechanism of Aquilaria sinensis leaf extract by integrated metabolomics and network pharmacology[J]. China Surfactant Detergent & Cosmetics, 2025, 55(6): 767-778.
"
No. | Protein name | UniProt | No. | Protein name | UniProt | |
---|---|---|---|---|---|---|
1 | SRD5A2 | P31213 | 27 | IKBKG | Q9Y6K9 | |
2 | LSS | P48449 | 28 | PRKACA | P17612 | |
3 | EDNRA | P25101 | 29 | PRKD1 | Q15139 | |
4 | AR | P10275 | 30 | DUSP22 | Q9NRW4 | |
5 | ABCC2 | Q92887 | 31 | RORA | P35398 | |
6 | BRD4 | O60885 | 32 | BRAF | P15056 | |
7 | ODC1 | P11926 | 33 | TCF4 | P15884 | |
8 | RHOA | P61586 | 34 | SMARCA2 | P51531 | |
9 | PARP1 | P09874 | 35 | TERT | O14746 | |
10 | HLA-DRB1 | P01911 | 36 | ERCC4 | Q92889 | |
11 | PTPN22 | Q9Y2R2 | 37 | ERCC5 | P28715 | |
12 | IL2RA | P01589 | 38 | HRAS | P01112 | |
13 | LPAR6 | P43657 | 39 | ADA | P00813 | |
14 | TGM1 | P22735 | 40 | IL1B | P01584 | |
15 | EBP | Q15125 | 41 | TNF | P01375 | |
16 | ATR | Q13535 | 42 | CYP19A1 | P11511 | |
17 | PLEC | Q15149 | 43 | KLK3 | P07288 | |
18 | IRAK1 | P51617 | 44 | CYP27B1 | O15528 | |
19 | NRAS | P01111 | 45 | EGFR | P00533 | |
20 | MMP1 | P03956 | 46 | PPARG | P37231 | |
21 | MAPT | P10636 | 47 | SOAT1 | P35610 | |
22 | XDH | P47989 | 48 | SRD5A1 | P18405 | |
23 | C1R | P00736 | 69 | PAM | P19021 | |
24 | HDAC9 | Q9UKV0 | 70 | APEX1 | P27695 | |
25 | ACVR1 | Q04771 | 71 | IL6 | P05231 | |
26 | CASR | P41180 | 72 | HSD3B1 | P14060 | |
73 | HSD11B1 | P28845 | 81 | ALOX15 | P16050 | |
74 | ICAM1 | P05362 | 82 | PGR | P06401 | |
75 | GSK3B | P49841 | 83 | LDLR | P01130 | |
76 | PTGS2 | P35354 | 84 | PRNP | F7VJQ1 | |
77 | SHBG | P04278 | 85 | MAP2K7 | O14733 | |
78 | CTSB | P07858 | 86 | EIF4E | P06730 | |
79 | ACE | P12821 | 87 | ALB | P02768 | |
80 | AHR | P35869 | 88 | PPIA | P62937 |
"
PubChem CID | Compound name | Degree |
---|---|---|
10026486 | Asperglaucide | 15 |
10871980 | Dihydrosesamin | 15 |
185904 | Aurantiamide | 15 |
8468 | Vanillic acid | 15 |
5281677 | Pachypodol | 15 |
5464381 | Velutin | 14 |
16119330 | N-Feruloyl dopamine | 14 |
17355 | Benzylacetone | 14 |
5281601 | Hydnocarpin | 13 |
689043 | Caffeic acid | 13 |
5280537 | N-Trans-feruloyltramine | 13 |
6440659 | n-cis-Feruloyltyramine | 13 |
5280666 | Chrysoeriol | 13 |
5320438 | Pectolinarigenin | 12 |
5280443 | Apigenin | 12 |
5316900 | 3, 3'-Dimethylquercetin | 12 |
5280442 | Acacetin | 12 |
79730 | Apigenin trimethyl ether | 12 |
11174076 | Scutellarein 4'-methyl ether | 11 |
5464461 | Jaceidin | 11 |
"
Pubchem CID | Compound name | TNF | TP53 | IL6 | EGFR | PPARG |
---|---|---|---|---|---|---|
026486 | Asperglaucide | -36.0 | -33.9 | -31.4 | -38.5 | -41.5 |
10871980 | Dihydrosesamin | -34.4 | -33.1 | -33.1 | -36.0 | -39.4 |
185904 | Aurantiamide | -37.3 | -33.5 | -28.9 | -36.5 | -40.2 |
8468 | Vanillic acid | -23.0 | -26.4 | -24.7 | -27.7 | -26.0 |
5281677 | Pachypodol | -31.0 | -31.8 | -33.1 | -33.5 | -38.1 |
5464381 | Velutin | -32.7 | -32.3 | -35.2 | -34.8 | -37.7 |
16119330 | N-Feruloyl dopamine | -31.4 | -32.3 | -34.4 | -32.3 | -36.9 |
17355 | Benzylacetone | -24.7 | -23.9 | -21.0 | -23.0 | -26.0 |
5281601 | Hydnocarpin | -31.4 | -31.0 | -31.0 | -35.2 | -38.1 |
689043 | Caffeic acid | -24.7 | -30.2 | -26.0 | -26.0 | -27.2 |
5280537 | N-Trans-feruloyltramine | -30.2 | -32.3 | -31.8 | -33.1 | -35.6 |
6440659 | n-cis-Feruloyltyramine | -28.9 | -33.5 | -33.5 | -31.8 | -34.8 |
5280666 | Chrysoeriol | -32.3 | -33.1 | -36.0 | -37.7 | -37.7 |
5320438 | Pectolinarigenin | -31.4 | -32.3 | -30.2 | -35.2 | -36.5 |
5280443 | Apigenin | -31.4 | -31.8 | -33.9 | -37.3 | -38.1 |
5316900 | 3, 3'-Dimethylquercetin | -31.0 | -33.5 | -35.6 | -34.8 | -38.1 |
5280442 | Acacetin | -31.4 | -32.7 | -32.7 | -37.3 | -38.1 |
79730 | Apigenin trimethyl ether | -31.8 | -30.2 | -28.1 | -34.8 | -38.1 |
11174076 | Scutellarein 4'-methyl ether | -30.6 | -33.5 | -34.4 | -36.0 | -37.7 |
5464461 | Jaceidin | -30.2 | -32.3 | -31.8 | -32.7 | -35.6 |
"
Compound name | Targets | Hydrophobic interactions | Hydrogen bond | π-Stacking | π-Cation interactions |
---|---|---|---|---|---|
Asperglaucide | TNF | 57Leu, 59Tyr, 119Tyr, 151Tyr, 155Ile | — | 59Tyr, 119Tyr | — |
TP53 | 20Lys, 100Leu, 103Leu | 92Tyr, 203Arg, 229Val | — | ||
IL6 | 110Glu, 114Ala | 110Glu | — | — | |
PPARG | 265Lys, 266His, 281Ile, 287Phe, 288Arg, 333Leu, 341Ile | 263Lys, 342Ser, 343Glu | 264Phe | 265Lys | |
EGFR | 694Leu, 699Phe, 721Lys, 764Leu, 766Thr, 768Leu | 721Lys, 769Met | 699Phe | — | |
Dihydrosesamin | TNF | 59Tyr, 119Tyr, 151Tyr | 151Tyr | 59Tyr, 119Tyr | — |
TP53 | 17Asn, 20Lys, 100Leu, 103Leu | 10Arg, 90Arg, 203Arg, 23Gln | — | — | |
IL6 | 31Tyr, 110Glu | — | — | — | |
PPARG | 264Phe, 281Ile | 265Lys, 266His, 342Ser | 264Phe, 287Phe | 265Lys | |
EGFR | 694Leu, 702Val, 820Leu | 769Met, 831Asp | 721Lys | — | |
Pachypodol | TNF | 119Tyr | 121Gly, 151Tyr | 119Tyr | — |
TP53 | 92Tyr, 100Leu, 103Leu, 115Pro | 16Phe, 104Arg | — | — | |
IL6 | 110Glu, 114Ala | 110GLu | — | — | |
PPARG | 264Phe, 266His, 288Arg, 341Ile | 265Lys, 266His | — | — | |
EGFR | 694Leu, 702Val, 719Ala, 721Lys, 820Leu | 766Thr, 733Cys | — | 721Lys |
"
Pubchem CID | Mw | nHA | nHD | lg P | Lipinski’s violation | Bioavailabilityscore | Topologicalsurface area(?2) |
---|---|---|---|---|---|---|---|
<500 | <10 | ≤5 | ≤4.5 | ≤1 | >0.1 | <140 | |
10026486 | 444 | 6 | 2 | 2.95 | 0 | 0.55 | 84.5 |
10871980 | 356 | 6 | 1 | 2.46 | 0 | 0.55 | 66.38 |
185904 | 402 | 5 | 3 | 2.75 | 0 | 0.55 | 78.43 |
8468 | 168 | 4 | 2 | 1.34 | 0 | 0.85 | 66.76 |
5281677 | 344 | 7 | 2 | 2.61 | 0 | 0.55 | 98.36 |
5464381 | 314 | 6 | 2 | 2.79 | 0 | 0.55 | 89.13 |
16119330 | 329 | 6 | 4 | 1.84 | 0 | 0.55 | 99.02 |
17355 | 148 | 1 | 0 | 2.01 | 0 | 0.55 | 17.07 |
5281601 | 298 | 5 | 1 | 3.08 | 0 | 0.55 | 68.9 |
689043 | 180 | 4 | 3 | 1.02 | 0 | 0.56 | 77.76 |
5280537 | 313 | 5 | 3 | 2.05 | 0 | 0.55 | 78.79 |
6440659 | 313 | 5 | 3 | 2.05 | 0 | 0.55 | 78.79 |
5280666 | 300 | 6 | 3 | 2.67 | 0 | 0.55 | 100.13 |
5320438 | 314 | 6 | 2 | 2.73 | 0 | 0.55 | 89.13 |
5280443 | 270 | 5 | 3 | 2.98 | 0 | 0.55 | 90.9 |
5316900 | 330 | 7 | 3 | 2.46 | 0 | 0.55 | 109.36 |
5280442 | 284 | 5 | 2 | 2.99 | 0 | 0.55 | 79.9 |
79730 | 312 | 5 | 0 | 2.76 | 0 | 0.55 | 57.9 |
11174076 | 300 | 6 | 3 | 2.55 | 0 | 0.55 | 100.13 |
5464461 | 360 | 8 | 3 | 2.12 | 0 | 0.55 | 118.59 |
[1] |
Williamson D, Gonzalez M, Finlay A Y. The effect of hair loss on quality of life[J]. Journal of the European Academy of Dermatology and Venereology, 2001, 15 (2) : 137-139.
doi: 10.1046/j.1468-3083.2001.00229.x pmid: 11495520 |
[2] | Wells P A, Willmoth T, Russell R J H. Does fortune favour the bald? Psychological correlates of hair loss in males[J]. British Journal of Psychology, 1995, 86 (3) : 337-344. |
[3] | Ulrike B P, Antonella T, David A W. Hair growth and disorders[M]. Berlin: Heudelberg, Springer, 2008. |
[4] | Choi B Y. Hair-growth potential of ginseng and its major metabolites: a review on its molecular mechanisms[J]. International Journal of Molecular Sciences, 2018, 19 (9) : 2703. |
[5] |
Epstein F H, Paus R, Cotsarelis G. The biology of hair follicles[J]. New England Journal of Medicine, 1999, 341 (7) : 491-497.
doi: 10.1056/NEJM199908123410706 pmid: 10441606 |
[6] | Messenger A G, Rundegren J. Minoxidil: mechanisms of action on hair growth[J]. British Journal of Dermatology, 2015, 150 (2) : 186-194. |
[7] | Kaufman K D, Olsen E A, Whiting D, et al. Finasteride in the treatment of men with androgenetic alopecia[J]. Journal of the American Academy of Dermatology, 1998, 39 (4) : 578-589. |
[8] | Zhao Haiting, Zheng Qing, Zhang Deling, et al. Research progress on anti-hair loss and regrowth of traditional Chinese medicine and its active ingredients[J]. Chinese Traditional and Herbal Drugs, 2022, 53 (22) : 7254-7263. |
[9] | Hu Zekun, Yan Tingting, Li Gaiyun, et al. Difference of characteristic compounds and bioactivities of Qinan and traditional agarwood[J]. Chemistry & Industry of Forest Products, 2023, 43 (5) : 63-72. |
[10] | Tan Xiaohui, Wang Liping, Long Lingyun, et al. Aquilaria sinensis leaf tea affects the immune system and increases sleep in zebrafish[J]. Frontiers in Pharmacology, 2023, 14: 1246761. |
[11] | Lee C K. Constituents of Aquilaria sinensis leaves upregulate the expression of matrix metalloproteases 2 and 9[J]. Molecules, 2021, 26 (9) : 2537. |
[12] | Du Xuemeng. A study on the compatibility rules of hair loss treatment formulas[D]. Nanjin: Nanjing University of Traditional Chinese Medicine, 2016. |
[13] | Bauermeister A, Mannochio-Russo H, Costa-Lotufo L, et al. Mass spectrometry-based metabolomics in microbiome investigations[J]. Nature Reviews Microbiology, 2022, 20 (3) : 143-160. |
[14] | Zhang Jing, Zhou Yiting, Ma Zhiyuan. Multi-target mechanism of Tripteryguim wilfordii Hook for treatment of ankylosing spondylitis based on network pharmacology and molecular docking[J]. Annals of Medicine, 2021, 53 (1) : 1091-1099. |
[15] | Yuan Hongjun, Zeng Xingquan, Shi Jian, et al. Time-course comparative metabolite profiling under osmotic stress in tolerant and sensitive Tibetan Hulless barley[J]. Biomed Research International, 2018: 1-12. |
[16] |
Micheal J K, Bryan L R, Blaine N A, et al. Relating protein pharmacology by ligand chemistry[J]. Nature Biotechnology, 2007, 25 (2) : 197-206.
doi: 10.1038/nbt1284 pmid: 17287757 |
[17] | Lin Siqi, Zhao Zhihui, Situ Jie. Determination of the active ingredient content and evaluation of its bioactivity in the Aquilaria sinensis leaves[J]. Journal of Guangzhou University of Traditional Chinese Medicine, 2023, 40 (5) : 1239-1247. |
[18] | Gentile P, Garcovich S. Advances in regenerative stem cell therapy in androgenic alopecia and hair loss: Wnt pathway, growth-factor, and mesenchymal stem cell signaling impact analysis on cell growth and hair follicle development[J]. Cells, 2019, 8 (5) : 466. |
[19] | Wang Wuji, Wang Honglan, Long Yunluan, et al. Controlling hair loss by regulating apoptosis in hair follicles: A comprehensive overview[J]. Biomolecules, 2023, 14 (1) : 20. |
[20] | Prie B E, Voiculescu V M, Ionescu-Bozdog O B, et al. Oxidative stress and alopecia areata[J]. Journal of Medicine and Life, 2015, 8: 43-46. |
[21] |
Kaya Erdogan H, Bulur I, Kocaturk E, et al. The role of oxidative stress in early-onset androgenetic alopecia[J]. Journal of Cosmetic Dermatology, 2017, 16 (4) : 527-530.
doi: 10.1111/jocd.12300 pmid: 27987270 |
[22] | Shi Yetan, Wan Sheng, Song Xiuze. Role of neurogenic inflammation in the pathogenesis of alopecia areata[J]. Dermatol, 2024, 51 (5) : 621-631. |
[23] | Kang J I, Kim E J I, Kim M K, et al. The promoting effect of Ishige sinicola on hair growth[J]. Marine Drugs, 2013, 11 (6) : 1783-1799. |
[24] |
Dhariwala M Y, Ravikumar P. An overview of herbal alternatives in androgenetic alopecia[J]. Journal of Cosmetic Dermatology, 2019, 18 (4) : 966-975.
doi: 10.1111/jocd.12930 pmid: 30980598 |
[25] | Öztüzün A, Çeker T, Yılmaz Ç, et al. Inflammatory signal transduction pathways induced by prilocaine toxicity in cultured ARPE-19 cells[J]. Journal of Biochemical and Molecular Toxicology, 2023, 37 (12) : e23491-e23491. |
[26] | Yang Huihai, Cheung M K, Yue G G L, et al. Integrated network pharmacology analysis and in vitro validation revealed the potential active components and underlying mechanistic pathways of herba patriniae in colorectal cancer[J]. Molecules, 2021, 26 (19) : 6032. |
[27] | Fang Zhengyu, Fang Jie, Gao Chunxiao, et al. Aurantiamide acetate ameliorates lung inflammation in lipopolysaccharide induced acute lung injury in mice[J]. BioMed Research International, 2022 (1) : 3510423. |
[28] | Yalameha B, Nejabati H R, Nouri M. Cardioprotective potential of vanillic acid[J]. Clinical and Experimental Pharmacology and Physiology, 2023, 50 (3) : 193-204. |
[29] | Xie Chenghui, Kang Jie, Li Zhimin, et al. The açaí flavonoid velutin is a potent anti-inflammatory agent: blockade of LPS mediated TNF-α and IL-6 production through inhibiting NF-κB activation and MAPK pathway[J]. The Journal of Nutritional Biochemistry, 2012, 23 (9) : 1184-1191. |
[30] | Kim J P, Lee I S, Seo J J, et al. Vitexin, orientin and other flavonoids from Spirodela polyrhiza inhibit adipogenesis in 3T3-L1 cells[J]. Phytotherapy Research, 2010, 24 (10) : 1543-1548. |
[31] | Genc F, Atabey U S, Serttas R, et al. Abiraterone acetate, in combination with apigenin, attenuates the survival of human castration-sensitive prostate cancer cells[J]. Anti-Cancer Agents in Medicinal Chemistry, 2022, 22 (18) : 3148-3156. |
[32] | Lee I G, Lee J, Hong S H, et al. Apigenin’s therapeutic potential against viral infection[J]. Frontiers in Bioscience, 2023, 28 (10). |
[33] | Jin Zhengxin, Tian Lige, Zhang Ying, et al. Apigenin inhibits fibrous scar formation after acute spinal cord injury through TGFβ/SMADs signaling pathway[J]. CNS Neuroscience & Therapeutics, 2022, 28 (11) : 1883-1894. |
[34] | Fu Dabkab, Huang Junfei, Li Kaitao, et al. Dihydrotestosterone-induced hair regrowth inhibition by activating androgen receptor in C57BL6 mice simulates androgenetic alopecia[J]. Biomedicine & Pharmacotherapy, 2021, 137: 111247. |
[35] | Gokce N, Basgoz N, Kenanoglu S, et al. An overview of the genetic aspects of hair loss and its connection with nutrition[J]. Journal of Preventive Medicine and Hygiene, 2022, 63 (2) : E228-E238. |
[36] |
Ohnemus U, Uenalan M, Inzunza J, et al. The hair follicle as an estrogen target and source[J]. Endocrine Reviews, 2006, 27 (6) : 677-706.
doi: 10.1210/er.2006-0020 pmid: 16877675 |
[37] | Yao Lu, Fan Zhuoyan, Han Shiwen, et al. Apigenin acts as a partial agonist action at estrogen receptors in vivo[J]. European Journal of Pharmacology, 2021, 906: 174175. |
[38] |
Wang Xiudi, Wang Guimin, Li Xiaoheng, et al. Suppression of rat and human androgen biosynthetic enzymes by apigenin: Possible use for the treatment of prostate cancer[J]. Fitoterapia, 2016, 111: 66-72.
doi: 10.1016/j.fitote.2016.04.014 pmid: 27102611 |
[39] | Lensing M, Jabbari A. An overview of JAK/STAT pathways and JAK inhibition in alopecia areata[J]. Frontiers in Immunology, 2022, 13: 955035. |
[40] |
Ozbey U, Attar R, Romero M A, et al. Apigenin as an effective anticancer natural product: Spotlight on TRAIL, WNT/β-catenin, JAK-STAT pathways, and microRNAs[J]. Journal of Cellular Biochemistry, 2019, 120 (2) : 1060-1067.
doi: 10.1002/jcb.27575 |
[41] |
Maashi M S, Al-Mualm M, Al-Awsi G R L, et al. Apigenin alleviates resistance to doxorubicin in breast cancer cells by acting on the JAK/STAT signaling pathway[J]. Molecular Biology Reports, 2022, 49 (9) : 8777-8784.
doi: 10.1007/s11033-022-07727-0 pmid: 35804214 |
[42] | Zalpoor H, Nabi-Afjadi M, Forghaniesfidvajani R, et al. Quercetin as a JAK-STAT inhibitor: a potential role in solid tumors and neurodegenerative diseases[J]. Cellular & Molecular Biology Letters, 2022, 27 (1) : 60. |
[43] | Choi B Y. Targeting Wnt/β-catenin pathway for developing therapies for hair loss[J]. International Journal of Molecular Sciences, 2020, 21 (14) : 4915. |
[44] | Kang J I, Choi Y K, Koh Y S, et al. Vanillic acid stimulates anagen signaling via the PI3K/Akt/β-catenin pathway in dermal papilla cells[J]. Biomolecules & Therapeutics, 2020, 28 (4) : 354. |
[45] |
Amberg N, Sotiropoulou P A, Heller G, et al. EGFR controls hair shaft differentiation in a p53-independent manner[J]. IScience, 2019, 15: 243-256.
doi: S2589-0042(19)30115-4 pmid: 31082735 |
[46] |
Tripurani S K, Wang Y, Fan Y X, et al. EGFR controls hair shaft differentiation in a p53-independent manner[J]. Molecular Biology of the Cell, 2018, 29 (22) : 2784-2799.
doi: 10.1091/mbc.E18-08-0488 pmid: 30188763 |
[47] | Agnihotri P, Deka H, Chakraborty D, et al. Anti-inflammatory potential of selective small compounds by targeting TNF-α & NF-kB signaling: a comprehensive molecular docking and simulation study[J]. Journal of Biomolecular Structure and Dynamics, 2023, 41 (23) : 13815-13828. |
[48] | Fu Shaojie, Zhou Yena, Hu Cong, et al. Network pharmacology and molecular docking technology-based predictive study of the active ingredients and potential targets of rhubarb for the treatment of diabetic nephropathy[J]. BMC Complementary Medicine and Therapies, 2022, 22 (1) : 210. |
[49] |
Gelinas A D, Davies D R, Edwards T E, et al. Crystal structure of interleukin-6 in complex with a modified nucleic acid ligand[J]. Journal of Biological Chemistry, 2014, 289 (12) : 8720-8734.
doi: 10.1074/jbc.M113.532697 pmid: 24415767 |
[50] | Brust R, Shang J, Fuhrmann J, et al. A structural mechanism for directing corepressor-selective inverse agonism of PPARγ[J]. Nature Communications, 2018, 9 (1) : 4687. |
[51] | Prabhavathi H, Dasegowda K R, Renukananda K H, et al. Molecular docking and dynamic simulation to identify potential phytocompound inhibitors for EGFR and HER2 as anti-breast cancer agents[J]. Journal of Biomolecular Structure and Dynamics, 2022, 40 (10) : 4713-4724. |
[52] | Babiaka S B, Simoben C V, Abuga K O, et al. Alkaloids with anti-onchocercal activity from Voacanga africana Stapf (Apocynaceae): identification and molecular modeling[J]. Molecules, 2020, 26 (1) : 70. |
[1] | 周友良, 路婉杉, 成志伟, 董坤. LC-MS/MS联合网络药理学、分子对接探究草莓叶抗氧化作用靶点及机制[J]. 日用化学工业(中英文), 2025, 55(1): 63-74. |
[2] | 张文杰, 石峰, 咸瑞卿, 董玉香, 郭凯, 姬胜利. P7脂肽的合成工艺与生物活性研究[J]. 日用化学工业(中英文), 2024, 54(9): 1050-1058. |
[3] | 毕武, 潘小红, 涂晓琴, 殷帅, 孙辉. 基于网络药理学的化妆品原料粉防己抗敏作用机制分析[J]. 日用化学工业(中英文), 2024, 54(3): 305-312. |
[4] | 张嘉琪, 万可宁, Ranjit Kaur Bhogal, 浦铭铭, 顾佳音, 盘瑶. 基于毛囊生长周期机制评估防脱化妆品功效的研究进展[J]. 日用化学工业(中英文), 2024, 54(12): 1504-1514. |
[5] | 贺改英, 吴首标, 刘树涛, 魏东东, 崔俊生, 王毅. 重组人钙网蛋白促雄激素性脱发小鼠毛发再生的作用研究[J]. 日用化学工业(中英文), 2024, 54(11): 1313-1319. |
[6] | 孙锦月, 何聪芬. 网络药理学研究现状及在化妆品领域应用展望[J]. 日用化学工业(中英文), 2023, 53(9): 1087-1093. |
[7] | 罗晓健, 洪石希, 罗晶, 杨思, 王紫艳, 熊耀坤. 乳酸促脂溢性脱发小鼠毛发生长研究[J]. 日用化学工业(中英文), 2023, 53(9): 1029-1034. |
[8] | 陈仙祺,马玲,陈殿松,常宽,王靖. 头发与头皮护理的科学基础(Ⅷ)——防脱生发体外评价方法以及植物防脱原料研究进展[J]. 日用化学工业(中英文), 2023, 53(8): 873-881. |
[9] | 刘丽, 尹雅婷, 程康, 李惠, 吕智, 易帆. 基于in silico技术探究益母草在化妆品中的应用前景[J]. 日用化学工业(中英文), 2023, 53(6): 686-697. |
[10] | Ranjit Kaur Bhogal, 陈旭斌, David Messenger, 宫哲慧, 孙佳凝, 皮瑛瑛, 顾佳音. 吡罗克酮乙醇胺盐的蛋白酶抑制作用及与硫酸锌复配的防脱发功效研究[J]. 日用化学工业(中英文), 2023, 53(4): 390-397. |
[11] | 马铃, 沈胡驰, 陈殿松, 杨井国, 王靖. 超声辅助酶法提取茶麸黄酮及其对Ⅱ型5α-还原酶抑制活性[J]. 日用化学工业(中英文), 2023, 53(3): 308-315. |
[12] | 石莲莲, 马文君, 孙亚萍, 王培培, 郑春阳. 乙酰基四肽-11防脱发作用的研究[J]. 日用化学工业(中英文), 2023, 53(11): 1293-1298. |
[13] | 王建成, 邢岩, 徐婷, 王玥, 李永强, 张丽梅. 马尾松松针提取物对人毛乳头细胞的保护作用及机制研究[J]. 日用化学工业(中英文), 2023, 53(1): 62-70. |
[14] | 王强,尚佳伟,陆优,陆荣柱. 植物提取物防脱生发机制研究进展[J]. 日用化学工业, 2021, 51(9): 897-902. |
[15] | 吴亚妮,唐寅,王姝畅,王莹,吕晓帆. 山茶油对D-半乳糖致衰老小鼠皮肤抗衰老功效的代谢组学研究[J]. 日用化学工业, 2021, 51(7): 632-638. |
|