日用化学工业(中英文) ›› 2024, Vol. 54 ›› Issue (12): 1504-1514.doi: 10.3969/j.issn.2097-2806.2024.12.013
张嘉琪1,2,万可宁3,Ranjit Kaur Bhogal4,浦铭铭3,顾佳音3,*(),盘瑶1,2,*(
)
收稿日期:
2024-08-08
修回日期:
2024-11-28
出版日期:
2024-12-22
发布日期:
2024-12-25
Jiaqi Zhang1,2,Kening Wan3,Ranjit Kaur Bhogal4,Mingming Pu3,Jiayin Gu3,*(),Yao Pan1,2,*(
)
Received:
2024-08-08
Revised:
2024-11-28
Online:
2024-12-22
Published:
2024-12-25
Contact:
* E-mail: 摘要:
近年来,受到脱发困扰的人群数量持续增加并向年轻化发展,消费者对防脱发产品的多样化需求日渐增多,国内外对防脱发功效原料和产品的研发越来越重视。然而,针对防脱发化妆品功效评估和功效成分的测试方法尚无统一标准,因此亟待建立完善的评价体系用于衡量防脱发化妆品功效。本文从毛发的基本结构和毛囊的生长周期出发,梳理了调控毛囊周期的相关信号分子、信号通路和反馈机制,为防脱发活性成分的作用机理和功效验证,以及防脱发产品的功效评估的相关方法和技术提供了基本理解,并基于正常毛发周期的变化提出了减少和延缓脱发的方法以及相应的化妆品策略。本文旨在基于毛囊生长周期机制为防脱发功效原料和产品的功效评估提供建议,从而为未来防脱发功效原料和产品研发提供参考标准。
中图分类号:
张嘉琪, 万可宁, Ranjit Kaur Bhogal, 浦铭铭, 顾佳音, 盘瑶. 基于毛囊生长周期机制评估防脱化妆品功效的研究进展[J]. 日用化学工业(中英文), 2024, 54(12): 1504-1514.
Jiaqi Zhang, Kening Wan, Ranjit Kaur Bhogal, Mingming Pu, Jiayin Gu, Yao Pan. A review of methods for evaluating effectiveness of cosmetic products and ingredients based on mechanisms of the human hair growth cycle[J]. China Surfactant Detergent & Cosmetics, 2024, 54(12): 1504-1514.
表1
毛囊各生长周期的组织形态特征变化"
毛囊生长周期 | 形态特征变化 |
---|---|
生长期[ | 生长期是毛囊生长最活跃的时期,可分为6个子阶段。生长期始于位于毛囊外根鞘隆突处的毛囊干细胞迅速增殖,向下迁移至真皮层,和真皮乳头重新连接再次形成毛球,并分化成为毛母质细胞。毛球毛母质细胞随后继续分化为截然不同的上皮细胞系内毛根鞘、毛干和外毛根鞘。生长期还是维持毛发生长的主要阶段,可以持续2~8年。当生长期结束进入退行期,毛发就达到了最大长度而不再生长 |
退行期[ | 退行期是毛囊经历的由大多数毛囊角质形成细胞(干细胞除外)程序性死亡(凋亡)驱动的内化过程。此期间真皮乳头体积减少最后凝结成球形,毛球上皮细胞分裂停止,毛囊逐渐收缩,内根鞘和毛母质消失,毛发停止增生,真皮乳头向上移动至毛囊隆突处 |
休止期[ | 在退行期晚期和休止期早期,毛干成熟形成杵状毛发(Club hair,CH),毛发毛根部的角化逐渐向下延伸。在休止期,毛囊干细胞保持静止状态,毛囊萎缩,使毛发容易脱落。下一个生长期开始时,毛囊干细胞受到信号分子调控发生分裂并产生祖细胞,这些祖细胞开始新的分化过程,于是毛囊进入新的生长周期 |
脱落期[ | 脱落期被定义为休止期毛囊的杵状毛发从其所在的毛囊中自发(可能是主动)脱落的过程,此期间受特异水解机制调节,杵状毛发和毛囊之间的细胞黏附结构被蛋白酶分解,导致毛发脱落 |
表2
作用于不同阶段的活性物质及其所诱导的信号分子"
作用阶段 | 防脱活性物质 | 诱导信号因子 |
---|---|---|
维持生长期 | 鹅不食草(Centipeda minima L.)提取物、橄榄油厂废水提取物(Olive mill wastewater extract,OMWW)[ | 诱导真皮乳头细胞中VEGF、IGF-1的表达 |
红葱头(Allium ascalonicum L.)、积雪草(Centella asiatica L.)提取物、人参皂苷(Ginsenosides)、α-茶树烯[ | 诱导真皮乳头细胞中VEGF的表达 | |
山竹、发酵木瓜[ | 增加毛囊中的ATP含量、改善毛囊结构并显着抑制脱发、增加头发密度 | |
延缓、抑制退行期 | 斑叶芒(Miscanthus sinensis)提取物[ | 下调真皮乳头细胞中TGF-β1的表达,诱导HGF和β-catenin的表达 |
咖啡因[ | 下调离体毛囊组织模型中TGF-β2蛋白的表达,下调人体外毛根鞘角化细胞中TGF-β2的表达 | |
腺苷[ | 下调人体外毛根鞘角化细胞中TGF-β2的表达 | |
原花青素[ | 下调体内TGF-β蛋白的表达 | |
高山火绒草(Leontopodium alpinum)提取物[ | 增加离体毛囊组织模型中的毛干长度 | |
延缓、抑制脱落期 | 蛋白酶抑制剂与咪唑类抗真菌剂[ | 抑制胰蛋白酶活性 |
吡罗克酮乙醇胺盐[ | ||
改善毛囊结构 | 水解酵母肽[ | 改善毛囊的血液循环,促进毛囊中胶原蛋白、角蛋白的合成,显著增加毛囊生长期和休止期的比例 |
乙酰基四肽-3[ | 促进胶原蛋白Ⅳ合成,增加毛囊的体积和长度 | |
泛醇、辅酶Q10、氨基酸、氨基酸衍生物[ | 促进角蛋白相关蛋白的合成 | |
二氨基嘧啶氧化物[ | 抑制赖氨酸羟化酶的合成,抵抗毛囊周围的胶原交联 | |
改善头皮和毛囊微环境 | 红参提取物[ | 提高过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GPX)和过氧化物歧化酶-2(SOD-2)等抗氧化酶的活性 |
生育酚乙酸酯(维生素E衍生物)[ | 改善头皮环境,维持毛囊健康 | |
消除羟基自由基的问荆(Equisetum arvense L.)提取物[ |
[1] | The State Council of the People’s Republic of China. Order of the State Council of the People’s Republic of China No. 727. Regulation on the Supervision and Administration of Cosmetics [S]. Beijing: China Press for Democracy and Legal System, 2020. |
[2] | National Medical Products Administration. Classification Rules and Classification Catalogue of Cosmetics[S]. Beijing: National Medical Products Administration, 2021. |
[3] | National Medical Products Administration. Test Method for Efficacy Measurement of Anti-hair Loss Cosmetic Products[S]. Beijing: National Medical Products Administration, 2021. |
[4] |
Schneider M R, Schmidt-ullrich R, Paus R. The hair follicle as a dynamic miniorgan[J]. Current Biology, 2009, 19 (3) : 132-142.
doi: 10.1016/j.cub.2008.12.005 pmid: 19211055 |
[5] | Mariya Miteva. Alopecia[M]. Translated by ZhouCheng. Beijing: Peking University Medical Press, 2020: 1-56. |
[6] | Paus R, Cotsarelis G, Epstein F H. The biology of hair follicles[J]. The New England Journal of Medicine, 1999, 341 (7) : 491-497. |
[7] |
Stenn K S, Paus R. Controls of hair follicle cycling[J]. Physiological Reviews, 2001, 81 (1) : 449-494.
doi: 10.1152/physrev.2001.81.1.449 pmid: 11152763 |
[8] |
Paus R, Muller-rover S, van der Veen C, et al. A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis[J]. Journal of Investigative Dermatology, 1999, 113 (4) : 523-532.
doi: 10.1046/j.1523-1747.1999.00740.x pmid: 10504436 |
[9] | Muller-rover S, Handjiski B, van der Veen C, et al. A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages[J]. Journal of Investigative Dermatology, 2001, 117 (1) : 3-15. |
[10] | Natarelli N, Gahoonia N, Sivamani R K. Integrative and mechanistic approach to the hair growth cycle and hair loss[J]. Journal of Clinical Medicine, 2023, 12 (3) : 893. |
[11] |
Milner Y, Sudnik J, Filippi M, et al. Exogen, shedding phase of the hair growth cycle: Characterization of a mouse model[J]. Journal of Investigative Dermatology, 2002, 119 (3) : 639-644.
pmid: 12230507 |
[12] |
Weger N, Schlake T. Igf-I signalling controls the hair growth cycle and the differentiation of hair shafts[J]. Journal of Investigative Dermatology, 2005, 125 (5) : 873-882.
pmid: 16297183 |
[13] | Wang Qiang, Shang Jiawei, Lu You, et al. Research progress on anti-hair loss mechanisms of plant extracts[J]. China Surfactant Detergent & Cosmetics, 2021, 51 (9) : 897-902. |
[14] |
Fernandez F A, Saeb L M, Cassarino D S. Histopathology of aging of the hair follicle[J]. Journal of Cutaneous Pathology, 2019, 46 (7) : 508-519.
doi: 10.1111/cup.13467 pmid: 30932205 |
[15] | Singh B, Schoeb T R, Bajpai P, et al. Reversing wrinkled skin and hair loss in mice by restoring mitochondrial function[J]. Cell Death & Disease, 2018, 9 (7) : 1-14. |
[16] |
Chew E G Y, Lim T C, Leong M F, et al. Observations that suggest a contribution of altered dermal papilla mitochondrial function to androgenetic alopecia[J]. Experimental Dermatology, 2022, 31 (6) : 906-917.
doi: 10.1111/exd.14536 pmid: 35119146 |
[17] | Kim B H, Lee M J, Lee W, et al. Hair growth stimulation effect of Centipeda minima extract: Identification of active compounds and anagen-activating signaling pathways[J]. Biomolecules (Basel, Switzerland), 2021, 11 (7) : 976. |
[18] | Lisa-Marie S, Thomas M S, Peggy S. Polyphenol-rich olive mill wastewater extract and its potential use in hair care products[J]. Journal of Cosmetics, Dermatological Sciences and Applications, 2021, 4 (11) : 356-370. |
[19] | Ruksiriwanich W, Khantham C, Muangsanguan A, et al. Phytochemical constitution, anti-inflammation, anti-androgen, and hair growth-promoting potential of shallot (Allium ascalonicum L.) extract[J]. Plants (Basel), 2022, 11 (11) : 1499. |
[20] | Saansoomchai P, Apinun L, Damratsamon S, et al. Enhanced VEGF expression in hair follicle dermal papilla cells by Centella asiatica linn.[J]. Chiang Mai University Journal of Natural Science, 2018, 17 (1) : 25-37. |
[21] | Choi B Y. Hair-growth potential of ginseng and its major metabolites: A review on its molecular mechanisms[J]. International Journal of Molecular Sciences, 2018, 19 (9) : 2703. |
[22] |
Daniels G, Akram S, Westgate G E, et al. Can plant-derived phytochemicals provide symptom relief for hair loss? A critical review[J]. International Journal of Cosmetic Science, 2019, 41 (4) : 332-345.
doi: 10.1111/ics.12554 pmid: 31240739 |
[23] | Mayer W, Weibel M, De Luca C, et al. Biomolecules of fermented tropical fruits and fermenting microbes as regulators of human hair loss, hair quality, and scalp microbiota[J]. Biomolecules, 2023, 13 (4). |
[24] | Kim Y J, Jung N, Kim N, et al. Effect of cysteine-free human fibroblast growth factor-5s mutant (FGF5sC93S) on hair growth[J]. Dermatologic Therapy, 2020, 33 (6) : e14530. |
[25] | Chen P, Zhang F, Fan Z, et al. Nanoscale microenvironment engineering for expanding human hair follicle stem cell and revealing their plasticity[J]. Journal of Nanobiotechnology, 2021, 19 (1) : 94. |
[26] |
Botchkarev V A, Botchkareva N V, Lommatzsch M, et al. BDNF overexpression induces differential increases among subsets of sympathetic innervation in murine back skin[J]. Eur. J. Neurosci., 1998, 10 (10) : 3276-3283.
pmid: 9786221 |
[27] | Monsivais D, Nagashima T, Prunskaite-hyyrylainen R, et al. Endometrial receptivity and implantation require uterine BMP signaling through an ACVR2A-SMAD1/SMAD5 axis[J]. Nature Communications, 2021, 12 (1) : 3386. |
[28] |
Jeong G H, Boisvert W A, Xi M Z, et al. Effect of Miscanthus sinensis var. purpurascens flower extract on proliferation and molecular regulation in human dermal papilla cells and stressed C57BL/6 mice[J]. Chinese Journal of Integrative Medicine, 2018, 24 (8) : 591-599.
doi: 10.1007/s11655-017-2755-7 pmid: 28497393 |
[29] | Fischer T W, Herczeg-Lisztes E, Funk W, et al. Differential effects of caffeine on hair shaft elongation, matrix and outer root sheath keratinocyte proliferation, and transforming growth factor-β2/insulin-like growth factor-1-mediated regulation of the hair cycle in male and female human hair follicles in vitro[J]. British Journal of Dermatology, 2014, 171 (5) :1031-1043. |
[30] |
Lisztes E, Tóth B I, Bertolini M, et al. Adenosine promotes human hair growth and inhibits catagen transition in vitro: role of the outer root sheath keratinocytes[J]. Journal of Investigative Dermatology, 2020, 140 (5) : 1085-1088.
doi: S0022-202X(19)33394-9 pmid: 31730764 |
[31] | Yeniay Y, Arca E. Evaluation of the efficacy and safety of topical procyanidin b2 and placebo in the treatment of androgenetic alopecia in men: A randomized, double-blind, placebo-controlled study[J]. Turk Dermatoloji Dergisi-Turkish Journal of Dermatology, 2022, 16 (4) : 108-114. |
[32] | Niu Y, Wang Y, Chen H, et al. Overview of the circadian clock in the hair follicle cycle[J]. Biomolecules, 2023, 13 (7) : 1068. |
[33] |
Bhogal R K, Mouser P E, Higgins C A, et al. Protease activity, localization and inhibition in the human hair follicle[J]. International Journal of Cosmetic Science, 2014, 36 (1) : 46-53.
doi: 10.1111/ics.12091 pmid: 23992282 |
[34] | Bhogal R K, Chen X B, Messenger D, et al. Novel role of piroctone olamine on protease inhibition in vitro, and reduction in human hair shedding in combination of zinc sulfate in vivo[J]. China Surfactant Detergent & Cosmetics, 2023, 53 (4) : 390-397. |
[35] | Williams R, Pawlus A D, Thornton M J. Getting under the skin of hair aging: the impact of the hair follicle environment[J]. Experimental Dermatology, 2020, 29 (7) : 588-597. |
[36] | Sadgrove N, Batra S, Barreto D, et al. An updated etiology of hair loss and the new cosmeceutical paradigm in therapy: Clearing ‘the Big Eight Strikes’[J]. Cosmetics (Basel), 2023, 10 (4) : 106. |
[37] | Shirai K, Obara K, Tohgi N, et al. Expression of anti-aging type-ⅩⅤⅡ collagen (COL17A1/BP180) in hair follicle-associated pluripotent (HAP) stem cells during differentiation[J]. Tissue & Cell, 2019, 59: 33-38. |
[38] | Claude D F, Nouha D, Jean-marie B, et al. Cosmetic and/or pharmaceutical composition comprising a yeast peptide hydrolysate and use of the yeast peptide hydrolysate as an active agent for strengthening hair: United States Patent: 8933036[P]. 2015-01-13. |
[39] | Cong Yan, Jiang Chunpeng. Research progress of anti-hair loss and hair-growth promoting cosmetic materials[J]. China Surfactant Detergent & Cosmetics, 2020, 50 (3) : 188-193. |
[40] | Aurélie C, Solène M, Valérie A, et al. TRICHOGEN-(TM) VEG-the anti-hair loss lotion[J]. Detergent & Cosmetics, 2017 (6). |
[41] |
Mahé Y F, Buan B, Bernard B A. A minoxidil-related compound lacking a C6 substitution still exhibits strong anti-lysyl hydroxylase activity in vitro[J]. Skin Pharmacology, 1996, 9 (3) : 177-183.
pmid: 8737914 |
[42] | Lin X, Zhu L, He J. Morphogenesis, growth cycle and molecular regulation of hair follicles[J]. Frontiers in Cell and Developmental Biology, 2022, 10: 899095. |
[43] |
Karnik P, Shah S, Dvorkin-wininger Y, et al. Microarray analysis of androgenetic and senescent alopecia: Comparison of gene expression shows two distinct profiles[J]. Journal of Dermatological Science, 2013, 72 (2) : 183-186.
doi: 10.1016/j.jdermsci.2013.06.017 pmid: 23886704 |
[44] |
Houschyar K S, Borrelli M R, Tarking C, et al. Molecular mechanisms of hair growth and regeneration: Current understanding and novel paradigms[J]. Dermatology (Basel), 2020, 236 (4) : 271-280.
doi: 10.1159/000506155 pmid: 32163945 |
[45] | Truong V, Jeong W. Hair growth-promoting mechanisms of red ginseng extract through stimulating dermal papilla cell proliferation and enhancing skin health[J]. Preventive Nutrition and Food Science, 2021, 26 (3) : 275-284. |
[46] | Zouboulis C C, Picardo M, Ju Q, et al. Beyond acne: Current aspects of sebaceous gland biology and function[J]. Reviews in Endocrine & Metabolic Disorders, 2016, 17 (3) : 319-334. |
[47] |
Pekmezci E, Dundar C, Turkoglu M. A proprietary herbal extract against hair loss in androgenetic alopecia and telogen effluvium: a placebo-controlled, single-blind, clinical-instrumental study[J]. Acta Dermatovenerol Alp Pannonica Adriat, 2018, 27 (2) : 51-57.
pmid: 29945259 |
[48] |
Philpott M P, Sanders D, Westgate G E, et al. Human hair growth in vitro: a model for the study of hair follicle biology[J]. Journal of Dermatological Science, 1994, 7 Suppl: 55-72.
pmid: 7999676 |
[49] |
Campiche R, Le Riche A, Edelkamp J, et al. An extract of Leontopodium alpinum inhibits catagen development ex vivo and increases hair density in vivo[J]. International Journal of Cosmetic Science, 2022, 44 (3) : 363-376.
doi: 10.1111/ics.12783 pmid: 35514231 |
[50] | Ramot Y, Tiede S, Biro T, et al. Spermidine promotes human hair growth and is a novel modulator of human epithelial stem cell functions[J]. The Public Library of Science, 2011, 6 (7) : e22564. |
[51] |
Zhang Y, Ni C, Huang Y, et al. Hair growth-promoting effect of resveratrol in mice, human hair follicles and dermal papilla cells[J]. Clinical, Cosmetic and Investigational Dermatology, 2021, 14: 1805-1814.
doi: 10.2147/CCID.S335963 pmid: 34866922 |
[52] |
Lu Z, Fischer T W, Hasse S, et al. Profiling the response of human hair follicles to ultraviolet radiation[J]. Journal of Investigative Dermatology, 2009, 129 (7) : 1790-1804.
doi: 10.1038/jid.2008.418 pmid: 19158839 |
[53] |
Honda I M, Da S S, Mercuri M, et al. Novel complex of cosmetic ingredients with promising action in preventing hair loss and follicular aging through mechanism involving enrichment of wnt/signaling, mitochondrial activity, and stem cells maintenance[J]. Journal of Cosmetic Dermatology, 2021, 20 (7) : 2179-2189.
doi: 10.1111/jocd.13815 pmid: 33179848 |
[54] | Chen Xianqi, Ma Ling, Chen Diansong, et al. Scientific foundations of hair and scalp care (Ⅷ): Method for in vitro evaluation of hair growth prevention and research progress of plant anti-stripping raw materials[J]. China Surfactant Detergent & Cosmetics, 2023, 53 (8) : 873-881. |
[55] |
Taghiabadi E, Nilforoushzadeh M A, Aghdami N. Maintaining hair inductivity in human dermal papilla cells: A review of effective methods[J]. Skin Pharmacology and Physiology, 2020, 33 (5) : 280-292.
doi: 10.1159/000510152 pmid: 33053562 |
[56] | National Medical Products Administration. Safety and Technical Standards for Cosmetics (2015 Edition) [S]. Beijing: China Zhijian Publishing House, 2016. |
[57] | Marcovici G, Bauman A. An uncontrolled case series using a botanically derived, β-cyclodextrin inclusion complex in two androgenetic alopecia-affected male subjects[J]. Cosmetics (Basel), 2020, 7 (3) : 65. |
[58] | Cai C, Zeng B, Lin L, et al. An oral French Maritime pine bark extract improves hair density in menopausal women: A randomized, placebo-controlled, double blind intervention study[J]. Health Science Reports, 2023, 6 (1) : e1045. |
[1] | 宋雨芯, 许琳琳, 佟瑶, 董坤, 何聪芬. 基于热糖化法体外生化抗糖化评价体系的优化与应用[J]. 日用化学工业(中英文), 2024, 54(5): 558-565. |
[2] | 高媛媛, 谭淇丹, 曹晨灿, 陈海峰, 加裕盈, 刘蕾. 4种原料在高渗脱水细胞模型中的作用研究[J]. 日用化学工业(中英文), 2024, 54(10): 1218-1226. |
[3] | 陆林玲, 鲁辉, 闵春艳, 钱叶飞. UHPLC-MS/MS法测定面膜化妆品中甘草、人参和黄芩类功效成分[J]. 日用化学工业(中英文), 2024, 54(1): 107-113. |
[4] | 马月滢, 刘琦, 加萌, 王俊杰, 王玮, 赵华. 一款紧致化妆品的功效评价方法研究[J]. 日用化学工业(中英文), 2024, 54(1): 73-79. |
[5] | 谭淇丹, 毕永贤, 刘蕾, 胡雪情, 代晓艳. 化妆品舒缓功效评价的研究现状[J]. 日用化学工业(中英文), 2023, 53(2): 193-201. |
[6] | 曹晨灿, 谭淇丹, 刘蕾, 杨小玉, 陈海峰. 用于抗糖化功效评价的细胞模型研究现状及应用前景[J]. 日用化学工业(中英文), 2023, 53(12): 1451-1458. |
[7] | 严俊,王容,李泽桦,张丽媛,程巧鸳,颜琳琦. 祛斑美白类化妆品中6种功效成分的同时测定及使用情况分析[J]. 日用化学工业, 2022, 52(7): 791-796. |
[8] | 李潇, 张晓娥, 卢永波, 金岩. 化妆品功效评价(Ⅷ)—— 3D皮肤模型在化妆品功效评价中的应用[J]. 日用化学工业, 2018, 48(9): 489-494. |
[9] | 郭立群,王敏. 化妆品功效评价(Ⅶ)——细胞生物学在化妆品功效评价中的应用[J]. 日用化学工业, 2018, 48(7): 371-377. |
[10] | 虞旦, 王昌涛, 赵丹, 张佳婵, 苏宁, 李萌. 人参发酵液的活性物质分析及其功效研究[J]. 日用化学工业, 2018, 48(2): 94-98. |
[11] | 陈文睿, 陈天华, 王小艺, 许继平, 于家斌, 王英强. 基于图像的皮肤纹理评价算法研究[J]. 日用化学工业, 2018, 48(12): 695-701. |
[12] | 王茜, 陈园园, 宋丽雅, 何聪芬. 皮肤微生态与化妆品研发[J]. 日用化学工业, 2017, 47(3): 168-173. |
[13] | 叶凤, 肖伟莉, 文国锦, 杨兴东, 王雪梅. 不同剂型四氢姜黄素皮肤渗透性的研究[J]. 日用化学工业, 2017, 47(10): 573-577. |
|