日用化学工业(中英文) ›› 2023, Vol. 53 ›› Issue (12): 1451-1458.doi: 10.3969/j.issn.2097-2806.2023.12.013
收稿日期:
2022-11-10
修回日期:
2023-11-27
出版日期:
2023-12-22
发布日期:
2024-01-12
Chencan Cao,Qidan Tan,Lei Liu*(),Xiaoyu Yang,Haifeng Chen
Received:
2022-11-10
Revised:
2023-11-27
Online:
2023-12-22
Published:
2024-01-12
Contact:
* Tel.: +86-18611801510, E-mail: 摘要:
综述了糖化反应作用机制、晚期糖化终产物(AGEs)的分类、糖化对皮肤的影响、抗糖化功效评价方法以及国内外用于抗糖化功效评价细胞模型的研究现状。根据各细胞功能不同,总结了角质形成细胞、成纤维细胞、免疫细胞、黑色素细胞和血管内皮细胞5种类型的细胞在抗糖化功效评价细胞模型中的应用,分别针对糖化引起的皮肤屏障受损、胶原流失、色素沉着、氧化应激以及炎症反应等问题。根据建模刺激方式的不同,总结了高浓度葡萄糖、甲基乙二醛/乙二醛、AGEs 3种刺激方式在糖化损伤细胞模型中的应用,分别针对糖化反应作用机制中的早期阶段、中期阶段以及AGEs作用阶段。展望了用于抗糖化功效评价的细胞模型应用前景,以期对抗糖化功效评价细胞模型标准方法的建立提供实验基础以及抗糖化功效原料的筛选提供理论依据。
中图分类号:
曹晨灿, 谭淇丹, 刘蕾, 杨小玉, 陈海峰. 用于抗糖化功效评价的细胞模型研究现状及应用前景[J]. 日用化学工业(中英文), 2023, 53(12): 1451-1458.
Chencan Cao, Qidan Tan, Lei Liu, Xiaoyu Yang, Haifeng Chen. Cell model research status and application prospects for the evaluation of anti-glycation efficacy[J]. China Surfactant Detergent & Cosmetics, 2023, 53(12): 1451-1458.
[1] |
Cordain L, Eaton S B, Sebastian A, et al. Origins and evolution of the Western diet: health implications for the 21st century[J]. American Journal of Clinical Nutrition, 2005, 81 (2) : 341-54.
doi: 10.1093/ajcn.81.2.341 pmid: 15699220 |
[2] |
Aragno M, Mastrocola R. Dietary sugars and endogenous formation of advanced glycation endproducts: emerging mechanisms of disease[J]. Nutrients, 2017, 9 (4) : 385.
doi: 10.3390/nu9040385 |
[3] | Bronsnick T, Murzaku E C, Rao B K. Diet in dermatology Part Ⅰ: atopic dermatitis, acne, and nonmelanoma skin cancer[J]. Journal of the American Academy of Dermatology, 2014, 71 (6) : 1039. |
[4] | Liu Y L, Deng J. Current situation and future of cosmetics industry in China[J]. Detergent & Cosmetics, 2016, 39 (1) : 1-8. |
[5] | Zhang Q, Cao L H, Zhao H, et al. Evaluation of cosmetic safety and efficacy claims under the new regulations[J]. Detergent & Cosmetics, 2021, 44 (7) : 1-4. |
[6] | Yin Y X, Zhao H. Evaluation of cosmetic efficacy (Ⅰ): Scientific support for cosmetic efficacy claims[J]. China Surfactant Detergent & Cosmetics, 2018, 48 (1) : 8-13. |
[7] | Guo L Q, Wang M. Cosmetic efficacy evaluation (Ⅶ): Application of cell biology in cosmetic efficacy evaluation[J]. China Surfactant Detergent & Cosmetics, 2018, 48 (7) : 371-377. |
[8] |
Gonzalez I, Morales M A, Rojas A. Polyphenols and AGEs/RAGE axis: trends and challenges[J]. Food Research International, 2020, 129: 108843.
doi: 10.1016/j.foodres.2019.108843 |
[9] | Byun K, Yoo Y, Son M, et al. Advanced glycation end-products produced systemically and by macrophages: A common contributor to inflammation and degenerative diseases[J]. Pharmacology & Therapeutics, 2017, 177: 44-55. |
[10] |
Henning C, Glomb M A. Pathways of the Maillard reaction under physiological conditions[J]. Glycoconjugate Journal, 2016, 33 (4) : 499-512.
doi: 10.1007/s10719-016-9694-y pmid: 27291759 |
[11] |
Peng X, Ma J, Chen F, et al. Naturally occurring inhibitors against the formation of advanced glycation end-products[J]. Food Function, 2011, 2 (6) : 289-301.
doi: 10.1039/c1fo10034c |
[12] | Tessier F J. The Maillard reaction in the human body: the main discoveries and factors that affect glycation[J]. Pathologie Biologle, 2010, 58 (3) : 214-219. |
[13] |
Hemmler D, Roullier-Gall C, Marshall J W, et al. Evolution of complex maillard chemical reactions, resolved in time[J]. Scientific Reports, 2017, 7 (1) : 3227.
doi: 10.1038/s41598-017-03691-z |
[14] |
Khan M, Liu H, Wang J, et al. Inhibitory effect of phenolic compounds and plant extracts on the formation of advance glycation end products: a comprehensive review[J]. Food Research International, 2020, 130: 108933.
doi: 10.1016/j.foodres.2019.108933 |
[15] |
Lund M N, Ray C A. Control of Maillard reactions in foods: strategies and chemical mechanisms[J]. Journal of Agricultural and Food Chemistry, 2017, 65 (23) : 4537-4552.
doi: 10.1021/acs.jafc.7b00882 pmid: 28535048 |
[16] |
Yeh W J, Hsia S M, Lee W H, et al. Polyphenols with antiglycation activity and mechanisms of action: A review of recent findings[J]. Journal of Food and Drug Analysis, 2017, 25 (1) : 84-92.
doi: 10.1016/j.jfda.2016.10.017 |
[17] |
Chen J H, Lin X, Bu C, et al. Role of advanced glycation end products in mobility and considerations in possible dietary and nutritional intervention strategies[J]. Nutrition Metabolism, 2018, 15: 72.
doi: 10.1186/s12986-018-0306-7 |
[18] |
Gkogkolou P, Bohm M. Advanced glycation end products: key players in skin aging?[J] Dermato- endocrinology, 2012, 4 (3) : 259-270.
doi: 10.4161/derm.22028 |
[19] |
Kuzan A. Toxicity of advanced glycation end products (Review)[J]. Biomedical Report, 2021, 14 (5) : 46.
doi: 10.3892/br |
[20] |
Fournet M, Bonte F, Desmouliere A. Glycation damage: a possible hub for major pathophysiological disorders and aging[J]. Aging and Disease, 2018, 9 (5) : 880-900.
doi: 10.14336/AD.2017.1121 |
[21] |
Ott C, Jacobs K, Haucke E, et al. Role of advanced glycation end products in cellular signaling[J]. Redox Biology, 2014, 2: 411-429.
doi: 10.1016/j.redox.2013.12.016 pmid: 24624331 |
[22] |
Lohwasser C, Neureiter D, Weigle B, et al. The receptor for advanced glycation end products is highly expressed in the skin and upregulated by advanced glycation end products and tumor necrosis factor-alpha[J]. Journal of Investigative Dermatology, 2006, 126 (2) : 291-299.
doi: 10.1038/sj.jid.5700070 pmid: 16374460 |
[23] | Alikhani M, Maclellan C M, Raptis M, et al. Advanced glycation end products induce apoptosis in fibroblasts through activation of ROS, MAP kinases, and the FOXO1 transcription factor[J]. American Journal of Physiology Cell Physiology, 2007, 292 (2) : 850-856. |
[24] | Lee E J, Kim J Y, Oh S H. Advanced glycation end products (AGEs) promote melanogenesis through receptor for AGEs[J]. Scientific Report, 2016, 6: 27848. |
[25] |
Zhu P, Ren M, Yang C, et al. Involvement of RAGE, MAPK and NF-kappaB pathways in AGEs-induced MMP-9 activation in HaCaT keratinocytes[J]. Experimental Dermatology, 2012, 21 (2) : 123-129.
doi: 10.1111/exd.2011.21.issue-2 |
[26] | Kong X, Zhao H, Tang Y. Research progress of application of skin model in cosmetic efficacy evaluation[J]. China Surfactant Detergent & Cosmetics, 2017, 47 (4) : 228-231, 236. |
[27] | Ma Y C, Liu L, He C F. Types, characteristics and application of the skin cells used in cosmetic efficacy evaluation[J]. China Surfactant Detergent & Cosmetics, 2021, 51 (1) : 50-55. |
[28] |
May J M, Jayagopal A, Qu Z C, et al. Ascorbic acid prevents high glucose-induced apoptosis in human brain pericytes[J]. Biochemical and Biophysical Research Communications, 2014, 452 (1) : 112-117.
doi: 10.1016/j.bbrc.2014.08.057 pmid: 25152398 |
[29] |
Soydas T, Yaprak Sarac E, Cinar S, et al. The protective effects of metformin in an in vitro model of aging 3T3 fibroblast under the high glucose conditions[J]. Journal of Physiology and Biochemistry, 2018, 74 (2) : 273-281.
doi: 10.1007/s13105-018-0613-5 pmid: 29512021 |
[30] |
Wu C H, Wu C F, Huang H W, et al. Naturally occurring flavonoids attenuate high glucose-induced expression of proinflammatory cytokines in human monocytic THP-1 cells[J]. Molecular Nutrition and Food Research, 2009, 53 (8) : 984-995.
doi: 10.1002/mnfr.v53:8 |
[31] |
Lan C C, Wu C S, Huang S M, et al. High-glucose environment inhibits p38MAPK signaling and reduces human β-3 expression in keratinocytes[J]. Molecular Medicine, 2011, 17 (7-8) : 771-779.
doi: 10.2119/molmed.2010.00091 |
[32] |
Fuloria S, Subramaniyan V, Karupiah S, et al. A comprehensive review on source, types, effects, nanotechnology, detection, and therapeutic management of reactive carbonyl species associated with various chronic diseases[J]. Antioxidants, 2020, 9 (11) : 1075.
doi: 10.3390/antiox9111075 |
[33] |
Larsen S A, Kassem M, Rattan S I. Glucose metabolite glyoxal induces senescence in telomerase-immortalized human mesenchymal stem cells[J]. Chemistry Central Journal, 2012, 6: 18.
doi: 10.1186/1752-153X-6-18 pmid: 22424056 |
[34] |
Maessen D E, Stehouwer C D, Schalkwijk C G. The role of methylglyoxal and the glyoxalase system in diabetes and other age-related diseases[J]. Clinical Science, 2015, 128 (12) : 839-861.
doi: 10.1042/CS20140683 |
[35] |
Peake B, Ghetia M, Gerber C, et al. Role of saturated and unsaturated fatty acids on dicarbonyl-albumin derived advanced glycation end products in vitro[J]. Amino Acids, 2022, 54 (5) : 721-732.
doi: 10.1007/s00726-021-03069-6 |
[36] |
Roberts M J, Wondrak G T, Laurean D C, et al. DNA damage by carbonyl stress in human skin cells[J]. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 2003, 522 (1-2) : 45-56.
pmid: 12517411 |
[37] |
Lin H, Lin T Y, Lin J A, et al. Effect of Pholidota namiko polysaccharides inhibiting methylglyoxal-induced glycation damage in vitro[J]. Antioxidants, 2021, 10 (10) : 1589.
doi: 10.3390/antiox10101589 |
[38] |
Yang C T, Meng F H, Chen L, et al. Inhibition of methylglyoxal-Induced AGEs/RAGE expression contributes to dermal protection by N-Acetyl-L-Cysteine[J]. Cell Physiology and Biochemistry, 2017, 41 (2) : 742-54.
doi: 10.1159/000458734 |
[39] |
Sawabe A, Yamashita A, Fujimatsu M, et al. Development of evaluation methods for anti-glycation activity and functional ingredients contained in coriander and Fennel seeds[J]. Processes, 2022, 10 (5) : 982.
doi: 10.3390/pr10050982 |
[40] |
Sahi A K, Verma P, Varshney N, et al. Revisiting methodologies for in vitro preparations of advanced glycation end products[J]. Applied Biochemistry and Biotechnology, 2022, 194 (6) : 2831-2855.
doi: 10.1007/s12010-022-03860-5 pmid: 35257316 |
[41] |
Sukjamnong S, Chen H, Saad S, et al. Fimbristylis ovata and Artemisia vulgaris extracts inhibited AGE-mediated RAGE expression, ROS generation, and inflammation in THP-1 cells[J]. Toxicological Research, 2022, 38 (3) : 331-343.
doi: 10.1007/s43188-021-00114-0 pmid: 35874499 |
[42] |
Yu W, Hu X, Wang M. Pterostilbene inhibited advanced glycation end products (AGEs)-induced oxidative stress and inflammation by regulation of RAGE/MAPK/NF-κB in RAW264.7 cells[J]. Journal of Functional Foods, 2018, 40: 272-279.
doi: 10.1016/j.jff.2017.11.003 |
[43] |
Han A R, Nam M H, Lee K W. Plantamajoside inhibits UVB and advanced glycation end products-induced MMP-1 expression by suppressing the MAPK and NF-κB pathways in HaCaT cells[J]. Photochemistry and Photobiology, 2016, 92 (5) : 708-719.
doi: 10.1111/php.2016.92.issue-5 |
[44] |
Yokota M, Tokudome Y. The effect of glycation on epidermal lipid content, its metabolism and change in barrier function[J]. Skin Pharmacology and Physiology, 2016, 29 (5) : 231-242.
doi: 10.1159/000448121 pmid: 27548800 |
[45] |
Advedissian T, Deshayes F, Poirier F, et al. The Parkinsonism-associated protein DJ-1/Park7 prevents glycation damage in human keratinocyte[J]. Biochemical and Biophysical Research Communications, 2016, 473 (1) : 87-91.
doi: S0006-291X(16)30368-0 pmid: 26995087 |
[46] |
Sakaguchi M, Murata H, Aoyama Y, et al. DNAX-activating protein 10 (DAP10) membrane adaptor associates with receptor for advanced glycation end products (RAGE) and modulates the RAGE-triggered signaling pathway in human keratinocytes[J]. Journal of Biological Chemistry, 2014, 289 (34) : 23389-23402.
doi: 10.1074/jbc.M114.573071 pmid: 25002577 |
[47] |
Lynch M D, Watt F M. Fibroblast heterogeneity: implications for human disease[J]. Journal of Clinical Investigation, 2018, 128 (1) : 26-35.
doi: 10.1172/JCI93555 pmid: 29293096 |
[48] |
Ouyang M, Fang J, Wang M, et al. Advanced glycation end products alter the m6A-modified RNA profiles in human dermal fibroblasts[J]. Epigenomics, 2022, 14 (8) : 431-449.
doi: 10.2217/epi-2022-0016 |
[49] |
Dai J, Chen H, Chai Y. Advanced glycation end products (AGEs) induce apoptosis of fibroblasts by activation of NLRP3 inflammasome via reactive oxygen species (ROS) signaling pathway[J]. Medical Science Monitor, 2019, 25: 7499-7508.
doi: 10.12659/MSM.915806 pmid: 31587010 |
[50] |
Fang J, Ouyang M, Qu Y, et al. Advanced glycation end products promote melanogenesis by activating NLRP3 inflammasome in human dermal fibroblasts[J]. Journal of Investigative Dermatology, 2022, 142 (10) : 2591-2602.
doi: 10.1016/j.jid.2022.03.025 |
[51] |
Lee Y I, Lee S G, Jung I, et al. Effect of a topical collagen tripeptide on antiaging and inhibition of glycation of the skin: a pilot study[J]. International Journal of Molecular Sciences, 2022, 23 (3) : 1101.
doi: 10.3390/ijms23031101 |
[52] |
Bezold V, Rosenstock P, Scheffler J, et al. Glycation of macrophages induces expression of pro-inflammatory cytokines and reduces phagocytic efficiency[J]. Aging, 2019, 11 (14) : 5258-5275.
doi: 10.18632/aging.v11i14 |
[53] |
Teng J, Li Y, Yu W, et al. Naringenin, a common flavanone, inhibits the formation of AGEs in bread and attenuates AGEs-induced oxidative stress and inflammation in RAW264.7 cells[J]. Food Chemistry, 2018, 269: 35-42.
doi: S0308-8146(18)31099-9 pmid: 30100446 |
[54] |
Fernandes A C F, Vieira N C, Santana A L, et al. Peanut skin polyphenols inhibit toxicity induced by advanced glycation end-products in RAW264.7 macrophages[J]. Food and Chemical Toxicology, 2020, 145: 111619.
doi: S0278-6915(20)30509-3 pmid: 32791243 |
[55] |
Li H, DaSilva N A, Liu W, et al. Thymocid®, a standardized black cumin (Nigella sativa) seed extract, modulates collagen cross-linking, collagenase and elastase activities, and melanogenesis in murine B16F10 melanoma cells[J]. Nutrients, 2020, 12 (7) : 2146.
doi: 10.3390/nu12072146 |
[56] |
Sun M, Shen Z, Zhou Q, et al. Identification of the antiglycative components of Hong Dou Shan (Taxus chinensis) leaf tea[J]. Food Chemistry, 2019, 297: 124942.
doi: 10.1016/j.foodchem.2019.06.009 |
[57] |
Hu R, Wang M Q, Ni S H, et al. Salidroside ameliorates endothelial inflammation and oxidative stress by regulating the AMPK/NF-κB/NLRP3 signaling pathway in AGEs-induced HUVECs[J]. European Journal of Pharmacology, 2020, 867: 172797.
doi: 10.1016/j.ejphar.2019.172797 |
[58] |
Zhou Q, Cheng K W, Gong J, et al. Apigenin and its methylglyoxal-adduct inhibit advanced glycation end products-induced oxidative stress and inflammation in endothelial cells[J]. Biochem Pharmacol, 2019, 166: 231-241.
doi: S0006-2952(19)30215-1 pmid: 31158339 |
[1] | 马月滢, 刘琦, 加萌, 王俊杰, 王玮, 赵华. 一款紧致化妆品的功效评价方法研究[J]. 日用化学工业(中英文), 2024, 54(1): 73-79. |
[2] | 杨秀芬,马文君,李磊,王培培,郑春阳. AIMP1衍生肽的护肤功效研究[J]. 日用化学工业(中英文), 2023, 53(2): 171-179. |
[3] | 谭淇丹, 毕永贤, 刘蕾, 胡雪情, 代晓艳. 化妆品舒缓功效评价的研究现状[J]. 日用化学工业(中英文), 2023, 53(2): 193-201. |
[4] | 颜少慰, 高畅, 左丽娜. 高浓度人参皂苷Rg3的制备及其在化妆品中的应用[J]. 日用化学工业(中英文), 2023, 53(1): 24-31. |
[5] | 李汇柯,冯楠,王闻博,李钧翔,何聪芬. 皮肤糖化反应发生机制、影响因素及抗糖化在化妆品行业中的发展现状[J]. 日用化学工业, 2021, 51(2): 153-160. |
[6] | 李潇, 张晓娥, 卢永波, 金岩. 化妆品功效评价(Ⅷ)—— 3D皮肤模型在化妆品功效评价中的应用[J]. 日用化学工业, 2018, 48(9): 489-494. |
[7] | 郭立群,王敏. 化妆品功效评价(Ⅶ)——细胞生物学在化妆品功效评价中的应用[J]. 日用化学工业, 2018, 48(7): 371-377. |
[8] | 陈文睿, 陈天华, 王小艺, 许继平, 于家斌, 王英强. 基于图像的皮肤纹理评价算法研究[J]. 日用化学工业, 2018, 48(12): 695-701. |
[9] | 杨红, 黄晓淳, 黄婧筠, 彭爱红, 黄志勇. 小球藻类金属硫蛋白抗紫外辐射的作用研究[J]. 日用化学工业, 2017, 47(1): 28-31. |
[10] | 沈雪梅,王荣庆,王雪梅,赵玮,肖伟莉. 桑黄提取物体外美容功效研究[J]. 日用化学工业, 2016, 46(9): 519-523. |
[11] | 郭松鹤,高合意,曾飒,张革. 抗衰老化妆品体外细胞水平上功效评价方法研究进展[J]. 日用化学工业, 2016, 46(2): 114-117. |
|