[1] |
Trivedi D K, Hollywood K A, Goodacre R. Metabolomics for the masses: the future of metabolomics in a personalized world[J]. New Horizons in Translational Medicine, 2017,3(6) : 294-305.
doi: 10.1016/j.nhtm.2017.06.001
pmid: 29094062
|
[2] |
Yang Qiang, Zhang Aihua, Miao Jianhua, et al. Metabolomics biotechnology, applications, and future trends: a systematic review[J]. RSC Advances, 2019,9(64) : 37245-37257.
doi: 10.1039/c9ra06697g
|
[3] |
Liu Yumin, Chen Tianlu, Qiu Yunpin, et al. An ultrasonication-assisted extraction and derivatization protocol for GC/TOFMS-based metabolite profiling[J]. Analytical and Bioanalytical Chemistry, 2011,40(5) : 1405-1417.
|
[4] |
Rainville P D, Stumpf C L, Shockcor J P, et al. Novel application of reversed-phase UPLC-oaTOF-MS for lipid analysis in complex biological mixtures: a new tool for lipidomics[J]. Journal of Proteome Research, 2007,6(2) : 552-558.
pmid: 17269712
|
[5] |
Worley B, Powers R. PCA as a practical indicator of OPLS-DA model reliability[J]. Current Metabolomics, 2016,4(2) : 97-103.
doi: 10.2174/2213235X04666160613122429
|
[6] |
Chong J, Soufan O, Li C, et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis[J]. Nucleic Acids Research, 2018,46(1) : 486-494.
|
[7] |
Zeng W, Endo Y. Lipid characteristics of Camellia seed oil[J]. Journal of Oleo Science, 2019,68(7) : 649-658.
doi: 10.5650/jos.ess18234
pmid: 31178460
|
[8] |
Lee W T, Tung Y T, Wu C C, et al. Camellia oil (Camellia oleifera abel.) modifies the composition of gut microbiota and alleviates acetic acid-induced colitis in rats[J]. Journal of Agricultural and Food Chemistry, 2018,66(28) : 7384-7392.
doi: 10.1021/acs.jafc.8b02166
|
[9] |
Lee C P, Yen G C. Antioxidant activity and bioactive compounds of tea seed (Camellia oleifera Abel.) oil[J]. Journal of Agricultural and Food Chemistry, 2006,54(3) : 779-784.
doi: 10.1021/jf052325a
|
[10] |
Feas X, Estevinho L M, Salinero C, et al. Triacylglyceride, antioxidant and antimicrobial features of virgin Camellia oleifera, C. reticulata and C. sasanqua oils[J]. Molecules, 2013,18(4) : 4573-4587.
doi: 10.3390/molecules18044573
|
[11] |
Wang Shuchang, Wu Yani. Effect of Camellia oil on the skin of D-galactose induced aging mice model[J]. China Surfactant Detergent & Cosmetics, 2019,49(5) : 320-327.
|
[12] |
Liu Yumin, Wei Zhenyu, Chen Xin, et al. Metabonomic study of ischemic stroke based on GC-TOFMS approach[J]. Journal of Shanghai Jiaotong University (Medical Science), 2017,37(2) : 207-211.
|
[13] |
Shui Sufang, Cai Xiaorong, Huang Rongqing, et al. The investigation of anti-inflammatory activity of Yi Guanjian decoction by serum metabonomics approach[J]. Journal of Pharmaceutical and Biomedical Analysis, 2017,133:41-48.
doi: S0731-7085(16)31098-6
pmid: 27856104
|
[14] |
Rahman S, Bhatia K, Khan A Q, et al. Topically applied vitamin E prevents massive cutaneous inflammatory and oxidative stress responses induced by double application of 12-O-tetradecanoylphorbol-13-acetate (TPA) in mice[J]. Chemico-Biological Interactions, 2008,172(3) : 195-205.
doi: 10.1016/j.cbi.2007.11.017
|
[15] |
Huang Zirou, Lin Yinku, Fang Jiayou. Biological and pharmacological activities of squalene and related compounds: potential uses in cosmetic dermatology[J]. Molecules, 2009,14(1) : 540-554.
doi: 10.3390/molecules14010540
|
[16] |
Barbosa E, Faintuch J, Machado-Moreira E A, et al. Supplementation of vitamin E, vitamin C, and zinc attenuates oxidative stress in burned children: a randomized, double-blind, placebo-controlled pilot study[J]. Journal of Burn Care & Research, 2009,30(5) : 859-866.
|
[17] |
Poljšak B, Dahmane R G, Godić A. Intrinsic skin aging: the role of oxidative stress[J]. Acta dermatovenerologica Alpina, Panonica, Et Adriatica, 2012,21(2) : 33-36.
|
[18] |
Qian Wen, Luo Dan, Zhou Bingrong. Research progress of the anti-ageing mechanism of carnosine[J]. Journal of Practical Dermatology, 2018,11(6) : 360-363.
|
[19] |
Wu H C, Shiau C Y, Chen H M, et al. Antioxidant activities of carnosine, anserine, some free amino acids and their combination[J]. Journal of Food and Drug Analysis, 2003,11(2) : 148-153.
|
[20] |
Smith A E, Stout J R, Kendall K L, et al. Exercise-induced oxidative stress: the effects of β-alanine supplementation in women[J]. Amino Acids, 2012,43(1) : 77-90.
doi: 10.1007/s00726-011-1158-x
pmid: 22102056
|
[21] |
Liu Jiji. Research on aspartic acid inhibiting the browning of fresh-cut potatoes[D]. Taian: Shandong Agriculture University, 2019.
|
[22] |
Leng Weibo, Liu Yulan, Li Shuang, et al. Effects of aspartic acid on intestinal morphology and mucosal antioxidant capacity of weaned piglets stimulated by lipopolysaccharide[J]. Chinese Journal of Animal Science, 2014,50(11) : 32-36.
|
[23] |
Yen G C, Hsieh C L. Antioxidant effects of dopamine and related compounds[J]. Bioscience, Biotechnology, and Biochemistry, 1997,61(10) : 1646-1649.
pmid: 10336274
|
[24] |
Riley P A. Melanin[J]. International Journal of Biochemistry & Cell Biology, 1997,29(11) : 1235-1239.
doi: 10.1016/S1357-2725(97)00013-7
|
[25] |
Wang Huanjun, Liu Ana, Zhao Wenxiao, et al. Metabolomics research reveals the mechanism of action of astragalus polysaccharide in rats with digestive system disorders[J]. Molecules, 2018,23(12) : 1-14.
doi: 10.3390/molecules23010001
|
[26] |
Philipsen M H, Samfors S, Malmberg P, et al. Relative quantification of deuterated omega-3 and-6 fatty acids and their lipid turnover in PC12 cell membranes using TOF-SIMS[J]. Journal of Lipid Research, 2018,59(11) : 2098-2107.
doi: 10.1194/jlr.M087734
pmid: 30206182
|
[27] |
Patwardhan A M, Akopian A N, Ruparel N B, et al. Heat generates oxidized linoleic acid metabolites that activate TRPV1 and produce pain in rodents[J]. Journal of Clinical Investigation, 2010,120(5) : 1617-1626.
doi: 10.1172/JCI41678
|