[1] |
Zhang M, Zhang Z, Fan Y, et al. Innovation of low permeability gas reservoir development technology and management in Changqing Gas area[J]. Natural Gas Industry, 2009, 29 (3) : 1-4.
|
[2] |
Levitt D, Jackson A, Einson C, et al. Identification and evaluation of high-performance EOR surfactants[J]. SPE Reservoir Evaluation & Engineering, 2009, 12 (2) : 243-253.
|
[3] |
Bai X. Preparation of smart microcarriers and study on the inclusion release characteristics of surfactants[D]. Chengdu: Southwest Petroleum University, 2017.
|
[4] |
Jocasta N, Lorraine L, Drexler S, et al. Polystyrene nanoparticles as surfactant carriers for enhanced oil recovery[J]. Journal of Applied Polymer Science, 2016, 133 (32) : 789-796.
|
[5] |
Chen C, Wang S, Kadhum M, et al. Using carbonaceous nanoparticles as surfactant carrier in enhanced oil recovery: A laboratory study[J]. Fuel, 2018, 222: 561-568.
doi: 10.1016/j.fuel.2018.03.002
|
[6] |
Nourafkan E, Hu Z, Wen D. Nanoparticle-enabled delivery of surfactants in porous media[J]. Journal of Colloid and Interface Science, 2018, 519: 44-57.
doi: S0021-9797(18)30180-2
pmid: 29482096
|
[7] |
De Freitas F A, Keils D, Lachter E R, et al. Synthesis and evaluation of the potential of nonionic surfactants/mesoporous silica systems as nanocarriers for surfactant controlled release in enhanced oil recovery[J]. Fuel, 2019, 241: 1184-1194.
doi: 10.1016/j.fuel.2018.12.059
|
[8] |
Avila J, Araugo L, Drexler S, et al. Polystyrene nanoparticles as surfactant carriers for enhanced oil recovery[J]. Journal of Applied Polymer Science, 2016, 133 (32) : 43789.
|
[9] |
Anton N, Benoit J, Saulnier P. Design and production of nanoparticles formulated from nano-emulsion templates-a review[J]. Journal of Controlled Release, 2008, 128 (3) : 185-199.
doi: 10.1016/j.jconrel.2008.02.007
pmid: 18374443
|
[10] |
Li M, Kang W, Li Z, et al. Stability of oil-in-water (O/W) nanoemulsions and its oil washing performance for enhanced oil recovery[J]. Physics of Fluids, 2021, 33 (7).
|
[11] |
Izquierdo P, Esquena J, Tadros T F, et al. Formation and stability of nano-emulsions prepared using the phase inversion temperature method[J]. Langmuir, 2002, 18 (1) : 26-30.
doi: 10.1021/la010808c
|
[12] |
Izquierdo P, Jin F, Esquena J, et al. The influence of surfactant mixing ratio on nano-emulsion formation by the pit method[J]. Journal of Colloid and Interface Science, 2005, 285 (1) : 388-394.
pmid: 15797437
|
[13] |
Morales D, Solans C, Gutiérrez J, et al. Oil/water droplet formation by temperature change in the water/C16E6/mineral oil system[J]. Langmuir, 2006, 22 (7) : 3014-3020.
pmid: 16548551
|
[14] |
Wu W, Li L, Xie X, et al. Construction of astaxanthin nanoemulsion based on response surface methodology[J]. Food Industry Science and Technology, 2018, 39 (10) : 204-210.
|
[15] |
Mosayebi A, Angaji M T, Khadiv-Parsi P. The effect of temperature on the interfacial tension between crude oil and ethoxylated nonylphenols[J]. Petroleum Science and Technology, 2016, 34 (15) : 1315-1322.
doi: 10.1080/10916466.2011.601506
|
[16] |
Rosestolato J, Pérez-Gramatges A, Lachter E, et al. Lipid nanostructures as surfactant carriers for enhanced oil recovery[J]. Fuel, 2019, 239: 403-412.
doi: 10.1016/j.fuel.2018.11.027
|
[17] |
Ma T, Tang D, Zhang G, et al. Adsorption behavior of surfactant at oil-water interface[J]. Applied Chemical Industry, 2007, 10: 1017-1020.
|
[18] |
Doan C, To C M, De Vrieze M, et al. Chemical profiling of the major components in natural waxes to elucidate their role in liquid oil structuring[J]. Food Chemistry, 2017, 214: 717-725.
doi: S0308-8146(16)31156-6
pmid: 27507530
|
[19] |
Iglauer S, Wu Y, Shulera P, et al. Alkyl polyglycoside surfactant-alcohol cosolvent formulations for improved oil recovery[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 339(1-3) : 48-59.
doi: 10.1016/j.colsurfa.2009.01.015
|
[20] |
Mushtaq M, Tan I M, Ismail L, et al. Oleate ester-derived nonionic surfactants: synthesis and cloud point behavior studies[J]. Journal of Dispersion Science and Technology, 2014, 35 (3) : 322-328.
doi: 10.1080/01932691.2013.783492
|
[21] |
Souayeh M, Al-Maamari R S, Aoudia M, et al. Experimental investigation of wettability alteration of oil-wet carbonates by nonionic surfactant[J]. Energy & Fuels, 2018, 32 (11) : 11222-11233.
doi: 10.1021/acs.energyfuels.8b02373
|
[22] |
Maghzi A, Mohebbi A, Kharrat R, et al. Pore-scale monitoring of wettability alteration by silica nanoparticles during polymer flooding to heavy oil in a five-spot glass micromodel[J]. Transport in Porous Media, 2010, 87 (3) : 653-664.
doi: 10.1007/s11242-010-9696-3
|
[23] |
Privman V, Dan V G, Park J, et al. Mechanism of formation of monodispersed colloids by aggregation of nanosize precursors[J]. Journal of Colloid and Interface Science, 1999, 213 (1) : 36-45.
pmid: 10191004
|
[24] |
Biswas K, Ray J C, Choi J S, et al. Morphology control of MSU-1 silica particles[J]. Journal of Non-Crystalline Solids, 2008, 354 (1) : 1-9.
doi: 10.1016/j.jnoncrysol.2007.07.020
|
[25] |
Tagavifar M, Jang S H, Sharma H, et al. Effect of pH on adsorption of anionic surfactants on limestone: Experimental study and surface complexation modeling[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538: 549-558.
doi: 10.1016/j.colsurfa.2017.11.050
|
[26] |
Yusuf M, Wathon M H, Thanasaksukthawee V, et al. Adsorption of saponin natural surfactant on carbonate rock and comparison to synthetic surfactants: An enhanced oil recovery prospective[J]. Energy & Fuels, 2021, 35 (14) : 11193-11202.
doi: 10.1021/acs.energyfuels.1c00721
|
[27] |
Zhao H, Kang W, Yang H, et al. Imbibition enhancing oil recovery mechanism of the two surfactants[J]. Physics of Fluids, 2020, 32 (4).
|