[1] |
Rinnerthaler M, Bischof J, Streubel M K, et al. Oxidative stress in aging human skin[J]. Biomolecules, 2015, 5 (2): 545-589.
doi: 10.3390/biom5020545
pmid: 25906193
|
[2] |
Jin X X, Zhang X D, Li Y B, et al. Long-acting microneedle patch loaded with adipose collagen fragment for preventing the skin photoaging in mice[J]. Biomaterials Advances, 2022, 135: 212744.
doi: 10.1016/j.bioadv.2022.212744
|
[3] |
Wang Simeng, Li Tian, Yang Tianye, et al. Progress of skin photoaging models of ultraviolet irradiated experimental animals[J]. Chinese Journal of Aesthetic Medicine, 2018, 27 (7): 146-150.
|
[4] |
Huang Yanping, Yang Ying, Wang Hongjuan, et al. Study on the mechanism and application of cordycepin in the field of skin care[J]. Chinese Journal of Aesthetic Medicine, 2019, 28 (1): 168-170.
|
[5] |
Cunningham K. Cordycepin, a metabolic product from cultures of Cordyceps militaris (Linn.) link. Part I. isolation and characterization[J]. Journal of the Chemical Society, 1951, 2: 2299-2300.
|
[6] |
Olatunji O J, Feng Y, Olatunji O O, et al. Cordycepin protects PC12 cells against 6-hydroxydopamine induced neurotoxicity via its antioxidant properties[J]. Biomedicine & Pharmacotherapy, 2016, 81: 7-14.
doi: 10.1016/j.biopha.2016.03.009
|
[7] |
Yan Q B, Zhang H D, Hui K, et al. Cordycepin ameliorates intracerebral hemorrhage induced neurological and cognitive impairments through reducing anti-oxidative stress in a mouse model[J]. Journal of Stroke and Cerebrovascular Diseases, 2022, 31 (1) : 106199.
doi: 10.1016/j.jstrokecerebrovasdis.2021.106199
|
[8] |
Hawley S A, Ross F A, Russell F M, et al. Mechanism of activation of AMPK by cordycepin[J]. Cell Chemical Biology, 2020, 27 (2): 214-222.
doi: S2451-9456(20)30004-0
pmid: 31991096
|
[9] |
Liu Wei, Feng Nianping. Percutaneous drug delivery nanotechnology[M]. Beijing: China Medicine Science and Technology Press, 2020: 1-342.
|
[10] |
Ruela A L M, Perissinato A G, de S Lino M E, et al. Evaluation of skin absorption of drugs from topical and transdermal formulations[J]. Brazilian Journal of Pharmaceutical Sciences, 2016, 52: 527-544.
doi: 10.1590/s1984-82502016000300018
|
[11] |
Haque T, Talukder M M U. Chemical enhancer: a simplistic way to modulate barrier function of the stratum corneum[J]. Advanced Pharmaceutical Bulletin, 2018, 8: 169-179.
doi: 10.15171/apb.2018.021
pmid: 30023318
|
[12] |
Verma A, Jain A, Hurkat P, et al. Transfollicular drug delivery: current perspectives[J]. Research and Reports in Transdermal Drug Delivery, 2016, 5: 1-17.
|
[13] |
Yu Y Q, Yang X, Wu X F, et al. Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: novel strategies for effective transdermal applications[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 646554.
doi: 10.3389/fbioe.2021.646554
|
[14] |
Santos A C, Morais F, Simões A, et al. Nanotechnology for the development of new cosmetic formulations[J]. Expert Opinion on Drug Delivery, 2019, 16 (4): 313-330.
doi: 10.1080/17425247.2019.1585426
|
[15] |
Ramadon D, Mccrudden M T C, Courtenay A J, et al. Enhancement strategies for transdermal drug delivery systems: current trends and applications[J]. Drug Delivery and Translational Research, 2021, 21: 909-916.
|
[16] |
Zhang Hucheng, Fan Haitao, Wang Xiaojie, et al. Purification of cordycepin from fermentation broth of Cordyceps militaris by use of macroporous resin AB-8 and octadecyl bonded silica chromatography[J]. Mycosystema, 2015, 34 (3): 490-498.
|
[17] |
Zhang H C, Deng L N, Zhang Z T, et al. Enhanced cordycepin production in caterpillar medicinal mushroom, Cordyceps militaris (Ascomycetes), mutated by a multifunctional plasma mutagenesis system[J]. International Journal of Medicinal Mushrooms, 2020, 22 (12): 1147-1159.
doi: 10.1615/IntJMedMushrooms.2020037153
|
[18] |
Ministry of Agriculture of the People’s Republic of China. Determination of cordycepin and adenosine in cordyceps products by high performance liquid chromatography method (NY/T 2116-2012) [S]. Beijing: China Agriculture Press, 2012: 1-3.
|
[19] |
Shen Huihui, Wen Qing, Guo Hanhong, et al. Preparation and efficacy evaluation of pleiotropic moisturizing co-delivery nanoemulsion[J]. Detergent & Cosmetics, 2019, 42 (4): 41-45.
|
[20] |
Wang Z W, Chen Z L, Jiang Z Y, et al. Cordycepin prevents radiation ulcer by inhibiting cell senescence via NRF2 and AMPK in rodents[J]. Nature Communications, 2019, 10: 2538.
doi: 10.1038/s41467-019-10386-8
pmid: 31182708
|
[21] |
Wang Xueyan, Huang Yanping, Yang Rong, et al. The comparison study of permeation enhancing effects of microneedle and azone on the transdermal absorption of cordycepin[J]. China Medical Cosmetology, 2018, 8 (9): 84-87.
|
[22] |
Choi M J, Maibach H I. Liposomes and niosomes as topical drug delivery systems[J]. Skin Pharmacology and Physiology, 2005, 18: 209-219.
pmid: 16015019
|
[23] |
Bi Y, Xia H X, Li L L, et al. Liposomal vitamin D3 as an anti-aging agent for the skin[J]. Pharmaceutics, 2019, 11: 311.
doi: 10.3390/pharmaceutics11070311
|
[24] |
Yu Y Q, Yang X, Wu X F. Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: novel strategies for effective transdermal applications[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 646554.
doi: 10.3389/fbioe.2021.646554
|
[25] |
Pardeike J, Hommoss A, Müller R H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products[J]. International Journal of Pharmaceutics, 2009, 366(1-2): 170-184.
doi: 10.1016/j.ijpharm.2008.10.003
pmid: 18992314
|
[26] |
Bhalke R D, Kulkarni S S, Kendre P N, et al. A facile approach to fabrication and characterization of novel herbal microemulsion-based UV shielding cream[J]. Future Journal of Pharmaceutical Sciences, 2020, 6: 76.
|