[1] |
Tessier F J. The Maillard reaction in the human body. The main discoveries and factors that affect glycation[J]. Pathologie Biologie, 2010, 58 (3) : 214-219.
doi: 10.1016/j.patbio.2009.09.014
pmid: 19896783
|
[2] |
Twarda-Clapa A, Olczak A, Bialkowska A M, et al. Advanced glycation end-products (AGEs): formation, chemistry, classification, receptors, and diseases related to AGEs[J]. Cells, 2022, 11 (8) : 1312.
|
[3] |
Xin C, Wang Y C, Liu M T, et al. Correlation analysis between advanced glycation end products detected noninvasively and skin aging factors[J]. Journal of Cosmetic Dermatology, 2021, 20 (1) : 243-248.
|
[4] |
Li Huike, Feng Nan, Wang Wenbo, et al. The mechanism of skin glycation reaction, influencing factors and the development status of anti-glycation in the cosmetics industry[J]. China Surfactant Detergent & Cosmetics, 2021, 51 (2) : 153-160.
|
[5] |
Bhatwadekar A D, Ghole V S. Rapid method for the preparation of an AGE-BSA standard calibrator using thermal glycation[J]. Journal of Clinical Laboratory Analysis, 2005, 19 (1) : 11-15.
pmid: 15645463
|
[6] |
Xia Qiuqin, Lv Lishuang. Factors inflfluencing the formation of fluorescent AGEs in arginine-reducing sugar model system[J]. Food Sciences, 2015, 36 (15) : 50-55.
|
[7] |
Lee J Y, Oh J G, Kim J S, et al. Effects of chebulic acid on advanced glycation endproducts-induced collagen cross-links[J]. Biol Pharm Bull, 2014, 37 (7) : 1162-1167.
|
[8] |
Liu Jianlei, Li Qing, Xing Xiaojuan, et al. Characteristic fluorescence of bovine serum albumin and different sugar Maillard reaction systems[J]. Journal of Food Safety and Quality, 2015, 6 (5) : 1819-1827.
|
[9] |
Manna A, Chakravorti S. Role of block copolymer-micelle nanocomposites in dye-bovine serum albumin binding: a combined experimental and molecular docking study[J]. Mol Biosyst, 2013, 9 (2) : 246-257.
doi: 10.1039/c2mb25368b
pmid: 23175177
|
[10] |
Liu J, Xing X, Jing H. Differentiation of glycated residue numbers on heat-induced structural changes of bovine serum albumin[J]. J Sci Food Agric, 2018, 98 (6) : 2168-2175.
|
[11] |
Ye Fengling, Jia Lirong, He Qiang, et al. The effect of pH and buffer systems on the inhibition of lipoxygenase activity by plant polyphenols[J]. Food & Machinery, 2021, 37 (4) : 32-41.
|
[12] |
Vasan S, Foiles P, Founds H. Therapeutic potential of breakers of advanced glycation end product-protein crosslinks[J]. Arch Biochem Biophys, 2003, 419 (1) : 89-96.
doi: 10.1016/j.abb.2003.08.016
pmid: 14568012
|
[13] |
Moulahoum H, Sanli S, Timur S, et al. Potential effect of carnosine encapsulated niosomes in bovine serum albumin modifications[J]. International Journal of Biological Macromolecules, 2019, 137: 583-591.
doi: S0141-8130(19)32891-0
pmid: 31276721
|
[14] |
Zhao L, Jin X, Li Y, et al. Effects of A-type oligomer procyanidins on protein glycation using two glycation models coupled with spectroscopy, chromatography, and molecular docking[J]. Food Res Int, 2022, 155: 111068.
|
[15] |
Adisakwattana S, Thilavech T, Sompong W, et al. Interaction between ascorbic acid and gallic acid in a model of fructose-mediated protein glycation and oxidation[J]. Electronic Journal of Biotechnology, 2017, 27: 32-36.
|
[16] |
Sarkar S, Kanchibotla B, Nelson J D, et al. Giant increase in the metal-enhanced fluorescence of organic molecules in nanoporous alumina templates and large molecule-specific red/blue-shift of the fluorescence peak[J]. Nano Lett, 2014, 14 (10) : 5973-5978.
doi: 10.1021/nl502990h
pmid: 25233371
|