日用化学工业(中英文) ›› 2023, Vol. 53 ›› Issue (8): 945-953.doi: 10.3969/j.issn.2097-2806.2023.08.011
收稿日期:
2022-08-06
修回日期:
2023-07-31
出版日期:
2023-08-22
发布日期:
2023-08-28
通讯作者:
赵庆
Received:
2022-08-06
Revised:
2023-07-31
Online:
2023-08-22
Published:
2023-08-28
Contact:
Qing Zhao
摘要:
三氯生(TCS)作为一种抗菌剂,在药品与个人护理产品中有着广泛的应用,已成为水环境中一种普遍存在的污染物。因其具有生物积累性、内分泌干扰效应、生殖毒性等危害,且已被证实可为某些毒性更大物质的前体,故水体中TCS的无害化处理引起了广泛关注,吸附处理法去除水中的TCS具有简单、绿色、高效等优势。文章总结了不同类型吸附剂对TCS的吸附效果,分析了水体的部分参数对吸附过程可能的影响,并对吸附过程的动力学及热力学方面进行了讨论,最后对TCS吸附处理的研究方向做出了展望。总体而言,绿色、低成本、可再生吸附剂的开发应用是研究重要方向,吸附剂的改性与复合是提高吸附效果的有效方式,为了更好地应用于实际环境中TCS的处理,TCS的吸附机理及环境因素的影响机制尚需进一步研究。
中图分类号:
安瑞,赵庆. 水溶液中三氯生的吸附研究进展[J]. 日用化学工业(中英文), 2023, 53(8): 945-953.
An Rui,Zhao Qing. Progress in the adsorption of triclosan in aqueous solution[J]. China Surfactant Detergent & Cosmetics, 2023, 53(8): 945-953.
表1
不同材料对TCS的吸附等温线和动力学模型"
吸附剂 | TCS初始质量 浓度/(mg/L) | 吸附剂用量 (固液比) | 最大吸附容量/(mg/g) | 等温线 模型 | 动力学 模型 | 参考文献 |
---|---|---|---|---|---|---|
颗粒活性炭 | 2~20 | 10 mg/200 mL | 273.97 | L | 拟二级 | [ |
活性炭纤维 | 2~20 | 10 mg/200 mL | 312.50 | L | 拟二级 | [ |
多壁碳纳米管 | 2~20 | 10 mg/200 mL | 243.31 | L | 拟二级 | [ |
商用粉末活性炭 | 0.2~1.0 | 10 mg/L | 71.5 | F | 拟二级 | [ |
二十二碳六烯酸改性活性炭 | 0.2~1.0 | 10 mg/L | 395.2 | L, F | 拟二级 | [ |
玉米秸秆生物炭 | 1~12 | 2 g/L | 6.123 7 | L, F | 拟二级 | [ |
皇竹草生物炭 | 1~12 | 2 g/L | 5.347 6 | L, F | 拟二级 | [ |
花生壳生物炭 | 1~12 | 2 g/L | 3.867 4 | L, F | 拟二级 | [ |
洋麻生物炭(750 ℃热解) | 5~200 | 30 mg/30 mL | 77.4 | L | 拟二级 | [ |
多壁碳纳米管 | 1~12 | 10 mg/250 mL | 171.349 | F, P-M | 拟二级 | [ |
硝酸纯化多壁碳纳米管 | 19.7 | L, F | 拟二级 | [ | ||
单壁碳纳米管 | 0.05~2 | 0.5~2.0 mg/200 mL | 558.2 | P-M | [ | |
多壁碳纳米管 | 0.05~2 | 0.5~2.0 mg/200 mL | 434.7 | P-M | [ | |
氧化多壁碳纳米管 | 0.05~2 | 0.5~2.0 mg/200 mL | 105.4 | P-M | [ | |
磁性多孔还原氧化石墨烯 | 0~30 | 10 mg/200 mL | 1 105.8 | L | 拟二级 | [ |
氧化石墨烯、活性炭、壳聚糖复合材料 | 0.1~10 | 25 mg/50 mL | 14.5 | L | 拟二级 | [ |
γ-Fe2O3碳复合材料 | 10~50(45 mL) | 500 mg/L(5 mL) | 892.9 | L | 拟二级 | [ |
炭黑 | 0.5~5 | 20 mg/100 mL | 18.62 | F | 拟二级 | [ |
纳米羟基磷灰石 | 5~35 | 0.5 g/L | 133.33 | L | 拟二级 | [ |
溴化十六烷基吡啶改性沸石(OZ 2.5) | 0~50 | 10 mg/10 mL | 46.95 | L | 拟二级 | [ |
十六烷基三甲基溴化铵改性沸石 | 0.5~30 | 100 mg/10 mL | 2.027 | L | 拟二级 | [ |
蒙脱石 | 0~150 | 20 mg/100 mL | 9 | L | [ | |
含阳离子酯双子表面活性剂修饰蒙脱石 | 0~150 | 20 mg/100 mL | 133 | L | [ | |
二十八烷基二甲基铵改性膨润土 | 2~10 | 1.0 mg/60 mL | 422 | L, F | 拟二级 | [ |
二十八烷基二甲基铵改性麦羟硅钠石 | 2~10 | 1.0 mg/60 mL | 534 | L, F | 拟二级 | [ |
MIL-53(Al) | 10~60 | 10 mg/100 mL | 447 | L | 拟二级 | [ |
MIL-53(Al)-1 | 10~60 | 10 mg/100 mL | 488 | L | 拟二级 | [ |
CuTz-1 | 60~400 | 12 mg/50 mL | 578.5 | R-P | 拟二级 | [ |
CuMtz-2a | 60~400 | 12 mg /50 mL | 671.1 | R-P | 拟二级 | [ |
CuMtz-2b | 60~400 | 12 mg /50 mL | 743.2 | R-P | 拟二级 | [ |
基于Fe0的磁性分子印迹聚合物(TCS-CTS-Fe0-MIPs) | 1~9 | 10 mg/100 mL | 20.86 | L | 拟二级 | [ |
基于磁性非分子印迹聚合物(TCS-CTS-Fe0-NIPs) | 1~9 | 10 mg/100 mL | 15.11 | L | 拟二级 | [ |
基于Fe3O4的磁性分子印迹聚合物 | 5.79~115.82 | 10 mg/5 mL | 53.12 | F | 拟二级 | [ |
基于Fe3O4的磁性非分子印迹聚合物 | 5.79~115.82 | 10 mg/5 mL | 26.04 | L | 拟二级 | [ |
聚乙烯 | 1.8~11 | 80 mg/20 mL | 1.248 | T | 拟二级 | [ |
聚苯乙烯 | 1.8~11 | 80 mg/20 mL | 1.033 | T | 拟二级 | [ |
磁性共价有机骨架纳米复合材料 | 0~2 | 0.8 mg/1 mL | 5.481 | F,L | 拟二级 | [ |
小粒径(<1 μm)聚氯乙烯 | 2~20 | 10 mg/25 mL | 12.7 | D-R | 拟二级 | [ |
大粒径(约74 μm)聚氯乙烯 | 2~20 | 10 mg/25 mL | 8.98 | D-R | 拟二级 | [ |
聚羟基丁酸酯 | 5~25 | 10 mg/10 mL | 9.442 | F | 拟一级 | [ |
聚乙烯 | 5~25 | 10 mg/10 mL | 4.432 | F | 拟一级 | [ |
表2
不同材料吸附TCS的热力学参数"
吸附剂 | 温度/K | ΔG0/ (kJ/mol) | ΔH0/ (kJ/mol) | ΔS0/(J/ (mol·K)) | 参考文献 |
---|---|---|---|---|---|
玉米秸秆生物炭 | 283 | -4.260 8 | -6.675 4 | -8.527 5 | [ |
298 | -4.132 8 | ||||
313 | -4.004 9 | ||||
皇竹草生物炭 | 283 | -1.212 6 | -1.601 2 | -1.372 2 | [ |
298 | -1.192 1 | ||||
313 | -1.171 5 | ||||
花生壳生物炭 | 283 | -0.345 2 | -3.102 2 | -9.736 6 | [ |
298 | -0.199 1 | ||||
313 | -0.053 1 | ||||
多壁碳纳米管 | 288 | -38.15 | -88.08 | -173.38 | [ |
298 | -36.41 | ||||
308 | -34.68 | ||||
十六烷基三甲基溴化铵改性沸石(S200) | 298 | -10.29 | -12.39 | -6.9 | [ |
308 | -10.16 | ||||
318 | -10.14 | ||||
纳米羟基磷灰石 | 288 | -7.852 | 4.011 | 41.179 | [ |
298 | -8.249 | ||||
308 | -8.685 | ||||
318 | -9.079 | ||||
溴化十六烷基吡啶改性沸石(OZ 0.5) | 298 | -28.35 | -9.698 | 62.83 | [ |
308 | -29.21 | ||||
318 | -29.59 | ||||
溴化十六烷基吡啶改性沸石(OZ 1.0) | 298 | -30.01 | -14.58 | 50.88 | [ |
308 | -30.62 | ||||
318 | -31.02 | ||||
溴化十六烷基吡啶改性沸石(OZ 2.5) | 298 | -30.91 | -13.65 | 58.10 | [ |
308 | -31.65 | ||||
318 | -32.07 | ||||
MIL-53(Al) | 283 | -8.2 | 9.1 | 61.1 | [ |
293 | -8.8 | ||||
298 | -9.1 | ||||
303 | -9.4 | ||||
MIL-53(Al)-1 | 283 | -8.8 | 21.5 | 107.1 | [ |
293 | -9.8 | ||||
298 | -10.4 | ||||
303 | -10.9 | ||||
CuMtz-2b | 293 | -38.69 | -392.6 | -1 208 | [ |
298 | -32.65 | ||||
303 | -26.61 | ||||
313 | -14.53 |
[1] |
Dann A B, Hontel A. Triclosan: environmental exposure, toxicity and mechanisms of action[J]. Journal of Applied Toxicology, 2011, 31 (4) : 285-311.
doi: 10.1002/jat.1660 pmid: 21462230 |
[2] | Yao S R, Wei R, Ni J Z, et al. Concentrations, sources and ecological risks of triclosan and methyl-triclosan in inland river sediments of Fuzhou City[J]. Acta Scientiae Circumstantiae, 2015, 35 (8) : 2519-2525. |
[3] |
Zarate F M, Schulwitz S E, Stevens K J, et al. Bioconcentration of triclosan, methyl-triclosan, and triclocarban in the plants and sediments of a constructed wetland[J]. Chemosphere, 2012, 88 (3) : 323-329.
doi: 10.1016/j.chemosphere.2012.03.005 pmid: 22483729 |
[4] |
Chen Z F, Ying G G, Lai H J, et al. Determination of biocides in different environmental matrices by use of ultra-high-performance liquid chromatography-tandem mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2012, 404: 3175-3188.
doi: 10.1007/s00216-012-6444-2 |
[5] |
Li L P. Toxicity evaluation and by-products identification of triclosan ozonation and chlorination[J]. Chemosphere, 2021, 263: 128223.
doi: 10.1016/j.chemosphere.2020.128223 |
[6] |
Dinwiddie M T, Terry P D, Chen J. Recent evidence regarding triclosan and cancer risk[J]. International Journal of Environmental Research and Public Health, 2014, 11 (2) : 2209-2217.
doi: 10.3390/ijerph110202209 pmid: 24566048 |
[7] | Liu H F, Wang F, Yao W Y. Effection of triclosan on the expressions of apoptosis-related genes in male zebrafish gill tissue[J]. Freshwater Fisheries, 2019, 49 (3) : 14-18. |
[8] |
Fu J, Bae S. The pH-dependent toxicity of triclosan on developing zebrafish (Danio rerio) embryos using metabolomics[J]. Aquatic Toxicology, 2020, 226: 105560.
doi: 10.1016/j.aquatox.2020.105560 |
[9] |
Wang C F, Tian Y. Reproductive endocrine-disrupting effects of triclosan: population exposure, present evidence and potential mechanisms[J]. Environmental Pollution, 2015, 206: 195-201.
doi: 10.1016/j.envpol.2015.07.001 |
[10] |
Jurewicz J, Radwan M, Wielgomas B, et al. Environmental levels of triclosan and male fertility[J]. Environmental Science and Pollution Research, 2018, 25 (6) : 5484-5490.
doi: 10.1007/s11356-017-0866-5 |
[11] |
Wu J L, Ji F F, Zhang H N, et al. Formation of dioxins from triclosan with active chlorine: a potential risk assessment[J]. Journal of Hazardous Materials, 2019, 367: 128-136.
doi: 10.1016/j.jhazmat.2018.12.088 |
[12] |
Latch D E, Packer J L, Arnold W A, et al. Photochemical conversion of triclosan to 2, 8-dichlorodibenzo-p-dioxin in aqueous solution[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 158 (1) : 63-66.
doi: 10.1016/S1010-6030(03)00103-5 |
[13] |
Ben W W, Sun P Z, Huang C H. Effects of combined UV and chlorine treatment on chloroform formation from triclosan[J]. Chemosphere, 2016, 150: 715-722.
doi: S0045-6535(15)30525-7 pmid: 26746417 |
[14] |
Jagini S, Konda S, Bhagawan D, et al. Emerging contaminant (triclosan) identification and its treatment: a review[J]. Sn Applied Sciences, 2019, 1 (6) : 640.
doi: 10.1007/s42452-019-0634-x |
[15] | Bu Q W, Zhang X, Yu G. Research progress in removal of pharmaceuticals and personal care products by adsorption method[J]. Environmental Engineering, 2021, 39 (2) : 1-9. |
[16] |
Sharipova A A, Aidarova S B, Bekturganova N E, et al. Triclosan as model system for the adsorption on recycled adsorbent materials[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 505: 193-196.
doi: 10.1016/j.colsurfa.2016.04.049 |
[17] |
Kaur H, Hippargi G, Pophali G R, et al. Biomimetic lipophilic activated carbon for enhanced removal of triclosan from water[J]. Journal of Colloid and Interface Science, 2019, 535: 111-121.
doi: S0021-9797(18)31174-3 pmid: 30292102 |
[18] | Wang X J, Lei Y T, Zeng J W, et al. Adsorption thermodynamics of triclosan by biochar[J]. Acta Scientiae Circumstantiae, 2019, 39 (6) : 1790-1800. |
[19] |
Ndagijimana P, Liu X, Li Z, et al. The synthesis strategy to enhance the performance and cyclic utilization of granulated activated carbon-based sorbent for bisphenol A and triclosan removal[J]. Environmental Science and Pollution Research, 2020, 27 (13) : 15758-15771.
doi: 10.1007/s11356-020-08095-7 |
[20] | Tian S Y, Wang J N, Li A M. Preparation of new activated carbon fiber with palm fiber for adsorption of triclosan from aqueous solution[J]. Ion Exchange and Adsorption, 2016, 32 (6) : 511-525. |
[21] |
González-Fernández L A, Medellín-Castillo N A, Ocampo-Pérez R, et al. Equilibrium and kinetic modelling of triclosan adsorption on single-walled carbon nanotubes[J]. Journal of Environmental Chemical Engineering, 2021, 9 (6) : 106382.
doi: 10.1016/j.jece.2021.106382 |
[22] |
Zhou S, Shao Y, Gao N, et al. Equilibrium, kinetic, and thermodynamic studies on the adsorption of triclosan onto multi-walled carbon nanotubes[J]. Clean-Soil Air Water, 2013, 41 (6) : 539-547.
doi: 10.1002/clen.201200082 |
[23] | Deng J, Lu Y A, Shang Z J, et al. Adsorption characteristics of triclosan and naproxen in water by carbon-based materials[J]. Journal of Central South University (Science and Technology), 2016, 47 (4) : 1427-1435. |
[24] |
Hu X, Cheng Z, Sun Z, et al. Adsorption of diclofenac and triclosan in aqueous solution by purified multi-walled carbon nanotubes[J]. Polish Journal of Environmental Studies, 2017, 26 (1) : 87-95.
doi: 10.15244/pjoes/63885 |
[25] |
Wang F, Lu X, Peng W, et al. Sorption behavior of bisphenol A and triclosan by graphene: comparison with activated carbon[J]. Acs Omega, 2017, 2 (9) : 5378-5384.
doi: 10.1021/acsomega.7b00616 pmid: 31457806 |
[26] |
Delhiraja K, Vellingiri K, Boukhvalov D W, et al. Development of highly water stable graphene oxide-based composites for the removal of pharmaceuticals and personal care products[J]. Industrial & Engineering Chemistry Research, 2019, 58 (8) : 2899-2913.
doi: 10.1021/acs.iecr.8b02668 |
[27] |
Li Y, Liu S, Wang C, et al. Effective column adsorption of triclosan from pure water and wastewater treatment plant effluent by using magnetic porous reduced graphene oxide[J]. Journal of Hazardous Materials, 2020, 386: 121942.
doi: 10.1016/j.jhazmat.2019.121942 |
[28] |
Behera S K, Oh S-Y, Park H-S. Sorption of triclosan onto activated carbon, kaolinite and montmorillonite: effects of pH, ionic strength, and humic acid[J]. Journal of Hazardous Materials, 2010, 179(1-3): 684-691.
doi: 10.1016/j.jhazmat.2010.03.056 pmid: 20381242 |
[29] |
Liu B, Lu J, Xie Y, et al. Microwave-assisted modification on montmorillonite with ester containing Gemini surfactant and its adsorption behavior for triclosan[J]. Journal of Colloid and Interface Science, 2014, 418: 311-316.
doi: 10.1016/j.jcis.2013.12.035 pmid: 24461850 |
[30] |
Lei C, Hu Y Y, He M Z. Adsorption characteristics of triclosan from aqueous solution onto cetylpyridinium bromide (CPB) modified zeolites[J]. Chemical Engineering Journal, 2013, 219: 361-370.
doi: 10.1016/j.cej.2012.12.099 |
[31] |
Phuekphong A F, Imwiset K J, Ogawa M. Organically modified bentonite as an efficient and reusable adsorbent for triclosan removal from water[J]. Langmuir, 2020, 36 (31) : 9025-9034.
doi: 10.1021/acs.langmuir.0c00407 pmid: 32579362 |
[32] |
Dou R, Zhang J, Chen Y, et al. High efficiency removal of triclosan by structure-directing agent modified mesoporous MIL-53(Al)[J]. Environmental Science and Pollution Research, 2017, 24 (9) : 8778-8789.
doi: 10.1007/s11356-017-8583-7 |
[33] |
Song J Y, Jhung S H. Adsorption of pharmaceuticals and personal care products over metal-organic frameworks functionalized with hydroxyl groups: quantitative analyses of H-bonding in adsorption[J]. Chemical Engineering Journal, 2017, 322: 366-374.
doi: 10.1016/j.cej.2017.04.036 |
[34] |
Yang M, Guo P, Feng X, et al. Solid solution approach to the design of copper mixed-triazolate multivariate-MOFs for the efficient adsorption of triclosan[J]. Microporous and Mesoporous Materials, 2021, 324: 111297.
doi: 10.1016/j.micromeso.2021.111297 |
[35] | Fan W G, Jiang Y F, Zhang Y G, et al. Design and evaluation of functional material for triclosan viamolecular recognition and molecular imprinting technology[J]. China Surfactant Detergent&Cosmetics, 2018, 48 (8) : 434-438, 449. |
[36] |
Gao R, Kong X, Su F, et al. Synthesis and evaluation of molecularly imprinted core-shell carbon nanotubes for the determination of triclosan in environmental water samples[J]. Journal of Chromatography A, 2010, 1217 (52) : 8095-8102.
doi: 10.1016/j.chroma.2010.10.121 pmid: 21093867 |
[37] |
Kong X, Li F, Li Y, et al. Molecularly imprinted polymer functionalized magnetic Fe3O4 for the highly selective extraction of triclosan[J]. Journal of Separation Science, 2020, 43 (4) : 808-817.
doi: 10.1002/jssc.v43.4 |
[38] |
Wang X, Huang P, Ma X, et al. Magnetic mesoporous molecularly imprinted polymers based on surface precipitation polymerization for selective enrichment of triclosan and triclocarban[J]. Journal of Chromatography A, 2018, 1537: 35-42.
doi: S0021-9673(18)30041-4 pmid: 29342422 |
[39] |
Chen Y, Lei X, Dou R, et al. Selective removal and preconcentration of triclosan using a water-compatible imprinted nano-magnetic chitosan particles[J]. Environmental Science and Pollution Research, 2017, 24 (22) : 18640-18650.
doi: 10.1007/s11356-017-9467-6 |
[40] | Li Y, Zhang H, Chen Y, et al. Core-shell structured magnetic covalent organic framework nanocomposites for triclosan and triclocarban adsorption[J]. Acs Applied Materials & Interfaces, 2019, 11 (25) : 22492-22500. |
[41] |
Ma J, Zhao J, Zhu Z, et al. Effect of microplastic size on the adsorption behavior and mechanism of triclosan on polyvinyl chloride[J]. Environmental Pollution, 2019, 254: 113104.
doi: 10.1016/j.envpol.2019.113104 |
[42] |
Cusioli L F, Quesada H B, de Andrade M B, et al. Application of a novel low-cost adsorbent functioned with iron oxide nanoparticles for the removal of triclosan present in contaminated water[J]. Microporous and Mesoporous Materials, 2021, 325: 111328.
doi: 10.1016/j.micromeso.2021.111328 |
[43] | He M Z, Hu Y Y, Lei C, et al. Adsorptive characteristics of triclosan on HDTMA modified zeolite[J]. Acta Scientiae Circumstantiae, 2013, 33 (1) : 20-29. |
[44] |
Zhang S J, Shao T, Bekaroglu S K, et al. Adsorption of synthetic organic chemicals by carbon nanotubes: effects of background solution chemistry[J]. Water Research, 2010, 44 (6) : 2067-2074.
doi: 10.1016/j.watres.2009.12.017 pmid: 20071001 |
[45] |
Cho H H, Huang H, Schwab K. Effects of solution chemistry on the adsorption of ibuprofen and triclosan onto carbon nanotubes[J]. Langmuir, 2011, 27 (21) : 12960-12967.
doi: 10.1021/la202459g |
[46] |
Bhatnagar A, Anastopoulos L. Adsorptive removal of bisphenol A (BPA) from aqueous solution: a review[J]. Chemosphere, 2017, 168: 885-902.
doi: S0045-6535(16)31512-0 pmid: 27839878 |
[47] |
Kaur H, Bansiwal A, Hippargi G, et al. Effect of hydrophobicity of pharmaceuticals and personal care products for adsorption on activated carbon: adsorption isotherms, kinetics and mechanism[J]. Environmental Science and Pollution Research, 2018, 25 (21) : 20473-20485.
doi: 10.1007/s11356-017-0054-7 |
[48] |
Kaur H, Hippargi G, Pophali G R, et al. Biomimetic lipophilic activated carbon for enhanced removal of triclosan from water[J]. Journal of Colloid and Interface Science, 2019, 535: 111-121.
doi: S0021-9797(18)31174-3 pmid: 30292102 |
[49] |
Cho E J, Kang J K, Moon J K, et al. Removal of triclosan from aqueous solution via adsorption by kenaf-derived biochar: its adsorption mechanism study via spectroscopic and experimental approaches[J]. Journal of Environmental Chemical Engineering, 2021, 9 (6) : 106343.
doi: 10.1016/j.jece.2021.106343 |
[50] |
Zhu X, Liu Y, Luo G, et al. Facile fabrication of magnetic carbon composites from hydrochar via simultaneous activation and magnetization for triclosan adsorption[J]. Environmental Science & Technology, 2014, 48 (10) : 5840-5848.
doi: 10.1021/es500531c |
[51] |
Wang J, Man H, Sun L, et al. Carbon black: a good adsorbent for triclosan removal from water[J]. Water, 2022, 14 (4) : 576.
doi: 10.3390/w14040576 |
[52] | Zhao T T, Shen Q Y, Ding Y R, et al. Removal of triclosan by nano-HAP synthesized by biotemplate technology[J]. Environmental Chemistry, 2014, 33 (6) : 1018-1026. |
[53] |
Sonia A G, Guadalupe M M, Sonia M G, et al. Removal of triclosan by CTAB-modified zeolite-rich tuff from aqueous solutions[J]. Mrs Advances, 2020, 5 (62) : 3257-3264.
doi: 10.1557/adv.2020.394 |
[54] |
Phuekphong A, Imwiset K, Ogawa M. Adsorption of triclosan onto organically modified-magadiite and bentonite[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31 (5) : 1902-1911.
doi: 10.1007/s10904-021-01919-0 |
[55] |
Lu Y C, Mao J H, Zhang W, et al. A novel strategy for selective removal and rapid collection of triclosan from aquatic environment using magnetic molecularly imprinted nano-polymers[J]. Chemosphere, 2020, 238: 124640.
doi: 10.1016/j.chemosphere.2019.124640 |
[56] |
Chen X, Gu X, Bao L, et al. Comparison of adsorption and desorption of triclosan between microplastics and soil particles[J]. Chemosphere, 2021, 263: 127947.
doi: 10.1016/j.chemosphere.2020.127947 |
[57] |
Tong H Y, Hu X S, Zhong X C, et al. Adsorption and desorption of triclosan on biodegradable polyhydroxybutyrate microplastics[J]. Environmental Toxicology and Chemistry, 2021, 40 (1) : 72-78.
doi: 10.1002/etc.4902 pmid: 33045102 |
[58] |
Al-Ghouti M A, Da’ana D A. Guidelines for the use and interpretation of adsorption isotherm models: a review[J]. Journal of Hazardous Materials, 2020, 393: 122383.
doi: 10.1016/j.jhazmat.2020.122383 |
[59] |
Wang J, Guo X. Adsorption isotherm models: Classification, physical meaning, application and solving method[J]. Chemosphere, 2020, 258: 127279.
doi: 10.1016/j.chemosphere.2020.127279 |
[1] | 赵峰滔,李宣镜,李恩泽,杜志平,李剑锋,申婧. 磁性纳米Fe3O4吸附材料的制备及在废水处理中的应用[J]. 日用化学工业, 2022, 52(8): 882-891. |
[2] | 董振鹏,田威. 脂肪酸甲酯乙氧基化物过滤工艺研究[J]. 日用化学工业, 2022, 52(3): 258-262. |
[3] | 张倩洁,沈兴亮,张婉萍. 超细珍珠粉制备Pickering乳液的影响因素研究[J]. 日用化学工业, 2021, 51(1): 1-9. |
[4] | 康万利,王芳,杨红斌,朱彤宇,Bauyrzhan Sarsenbekuly. 两亲聚合物设计合成及其增效体系研究(VIII)—— 剪切降解与恢复特性[J]. 日用化学工业, 2020, 50(8): 516-522. |
[5] | 杨红斌,康万利,李哲,Bauyrzhan Sarsenbekuly,蒋海壮,王嘉林. 两亲聚合物设计合成及其增效体系研究(XI)——两亲聚合物凝胶[J]. 日用化学工业, 2020, 50(11): 743-748. |
[6] | 王新刚,杨效益,孙永强,郭朝华,李萍,李建波. 窄分布脂肪醇醚硫酸钠与十四烷基三甲基溴化铵复配性能的研究[J]. 日用化学工业, 2019, 49(8): 485-491. |
[7] | 翟功勋, 丁凤美, 邢志奇, 周翔. 香兰素基非离子表面活性剂的动态表面张力与气/液界面吸附行为[J]. 日用化学工业, 2018, 48(6): 303-307. |
[8] | 郭海燕, 姚晨之, 严方. 表面活性剂水溶液相行为研究进展[J]. 日用化学工业, 2018, 48(3): 172-177. |
[9] | 田永红, 郭奕光, 翟晓梅, 张婉萍. 非离子表面活性剂形成微乳体系的规律性研究[J]. 日用化学工业, 2015, 45(3): 137-142. |
[10] | 李恩泽, 杜志平, 李萍, 王国永. 三硅氧烷离子液体水溶液的动态表面张力研究[J]. 日用化学工业, 2014, 44(8): 421-425. |
[11] | 赵莉, 邓成龙, 徐宝财. 表面活性剂的性能与应用(Ⅹ)——表面活性剂的吸附作用及其应用[J]. 日用化学工业, 2014, 44(10): 550-554. |
|