日用化学工业 ›› 2022, Vol. 52 ›› Issue (9): 1011-1015.doi: 10.3969/j.issn.1001-1803.2022.09.014
收稿日期:
2022-01-12
修回日期:
2022-05-30
出版日期:
2022-09-22
发布日期:
2022-09-23
通讯作者:
燕永利
基金资助:
Yan Yongli1,*(),Cai Yuxiu1,Dou Longlong2,Cao Yuxia2
Received:
2022-01-12
Revised:
2022-05-30
Online:
2022-09-22
Published:
2022-09-23
Contact:
Yongli Yan
摘要:
看似普通的小气泡,在人们的日常生活、工业生产和医药卫生等领域却发挥着极其重要的作用,而对于含有不同精细结构的复杂泡沫体系而言,其具有更加丰富的流动和稳定特性。本文针对这类复杂泡沫体系,包括表面活性剂聚集体稳定泡沫、纳米颗粒稳定泡沫和油水混相泡沫的排液动力学研究的发展现状做一总结评述。聚焦复杂泡沫体系中精细结构对其排液行为的影响机制,通过文献调研指明了该领域今后的研究方向与手段。
中图分类号:
燕永利,蔡雨秀,豆龙龙,曹玉霞. 复杂泡沫体系排液动力学研究进展[J]. 日用化学工业, 2022, 52(9): 1011-1015.
Yan Yongli,Cai Yuxiu,Dou Longlong,Cao Yuxia. Research progress in the dynamics of liquid drainage from complex foam system[J]. China Surfactant Detergent & Cosmetics, 2022, 52(9): 1011-1015.
[1] | Stevenson P. Foam engineering, fundamentals and applications[M]. Pondicherry: Wiley-Blackwell, 2012: 227-509. |
[2] |
Hill C, Eastoe J. Foams: From nature to industry[J]. Advances in Colloid and Interface Science, 2017, 247: 496-513.
doi: 10.1016/j.cis.2017.05.013 |
[3] |
Rio E, Drenckhan W, Salonen A D, et al. Unusually stable liquid foams[J]. Advances in Colloid and Interface Science, 2014, 205: 74-86.
doi: 10.1016/j.cis.2013.10.023 |
[4] |
Lee M, Lee E Y, Lee D, et al. Stabilization and fabrication of microbubbles: Applications for medical purposes and functional materials[J]. Soft Matter, 2015, 11: 2067-2079.
doi: 10.1039/C5SM00113G |
[5] |
Zhou J, Ranjith P G, Wanniarachchi W A M. Different strategies of foam stabilization in the use of foam as a fracturing fluid[J]. Advances in Colloid and Interface Science, 2020, 276: 102104.
doi: 10.1016/j.cis.2020.102104 |
[6] |
Friberg S E, Solans C. Surfactant association structures and the stability of emulsions and foams[J]. Langmuir, 1986, 2: 121-126.
doi: 10.1021/la00068a001 |
[7] |
Dickinson E. Structuring of colloidal particles at interfaces and the relationship to food emulsion and foam stability[J]. Journal of Colloid and Interface Science, 2015, 449: 38-45.
doi: 10.1016/j.jcis.2014.09.080 pmid: 25446956 |
[8] |
Zhang Yusong, Liu Qi, Ye Hang, et al. Nanoparticles as foam stabilizer: Mechanism, control parameters and application in foam flooding for enhanced oil recovery[J]. Journal of Petroleum Science and Engineering, 2021, 202: 108561.
doi: 10.1016/j.petrol.2021.108561 |
[9] |
Langevin D. Aqueous foams: A field of investigation at the frontier between chemistry and physics[J]. ChemPhysChem, 2008, 9: 510-522.
doi: 10.1002/cphc.200700675 |
[10] |
Wang J, Nguyen A V, Farrokhpay S. A critical review of the growth, drainage and collapse of foams[J]. Advances in Colloid and Interface Science, 2016, 228: 55-70.
doi: 10.1016/j.cis.2015.11.009 |
[11] |
Jalmes A S. Physical chemistry in foam drainage and coarsening[J]. Soft Matter, 2006, 2: 836-849.
doi: 10.1039/b606780h |
[12] |
Addad S C, Höhler R, Pitois O. Flow in foams and flowing foams[J]. Annual Review of Fluid Mechanics, 2013, 45: 241-267.
doi: 10.1146/annurev-fluid-011212-140634 |
[13] |
Denkov N, Tcholakova S, Brinkova N P. Physicochemical control of foam properties[J]. Current Opinion in Colloid & Interface Science, 2020, 50: 101376.
doi: 10.1016/j.cocis.2020.08.001 |
[14] |
Sun Qicheng. Liquid foam drainage: an overview[J]. International Journal of Modern Physics B, 2008, 22: 2333-2354.
doi: 10.1142/S0217979208039514 |
[15] |
Giavazzi F, Trappe V, Erbino R. Multiple dynamic regimes in a coarsening foam[J]. Journal of Physics: Condensed Matter, 2021, 33: 24002.
doi: 10.1088/1361-648X/abb684 |
[16] |
Roberts K, Axberg C, Österlund R, et al. Liquid crystals as lamellar reservoirs reduce thinning by drainage[J]. Nature, 1975, 255: 53-54.
doi: 10.1038/255053a0 |
[17] | Bergeron V. Forces and structure in thin liquid soap films[J]. Journal of Physics: Condensed Matter, 1999, 11: 215-238. |
[18] |
Karakashev S I. Hydrodynamics of foams[J]. Experiments in Fluids, 2017, 58: 91.
doi: 10.1007/s00348-017-2332-z |
[19] | Weaire D, Hutzler S. The physics of foams[M]. Oxford: Oxford University Press, 1999: 126-143. |
[20] |
Verbist G, Weaire D, Kraynik A M. The foam drainage equation[J]. Journal of Physics: Condensed Matter, 1996, 8: 3715-3731.
doi: 10.1088/0953-8984/8/21/002 |
[21] | Hilgenfeldt S, Arif S, Tsai J C. Foam: A multiphase system with many facets[J]. Philosophical Transactions of the Royal Society A, 2008, 366: 2145-2159. |
[22] |
Koehler S A, Hilgenfeldt S, Stone H A. A generalized view of foam drainage: Experiment and theory[J]. Langmuir, 2000, 16: 6327-6341.
doi: 10.1021/la9913147 |
[23] | Yan Yongli, Qu Chengtun, Zhang Ningsheng, et al. A study on the kinetics of liquid drainage from colloidal gas aphrons (CGAs)[J]. Colloidsand Surfaces A: Physicochemicaland Engineering Aspects, 2005, 259: 167-172. |
[24] |
Chen Zonglin, Yan Yongli, Huang Xuebin. Stabilization of foams solely with polyoxyethylene-type nonionic surfactant[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 331: 239-244.
doi: 10.1016/j.colsurfa.2008.08.011 |
[25] |
Horozov T S. Foams and foam films stabilized by solid particles[J]. Current Opinion in Colloid & Interface Science, 2008, 13: 134-140.
doi: 10.1016/j.cocis.2007.11.009 |
[26] |
Narsimhan G. Drainage of particle stabilized foam film[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 495: 20-29.
doi: 10.1016/j.colsurfa.2016.01.044 |
[27] |
Briceño-Ahumada Z, Soltero-Martínez J F A, Castillo R. Aqueous foams and emulsions stabilized by mixtures of silica nanoparticles and surfactants: A state-of-the-art review[J]. Chemical Engineering Journal Advances, 2021, 7: 100116.
doi: 10.1016/j.ceja.2021.100116 |
[28] |
Haffner B, Khidas Y, Pitois O. The drainage of foamy granular suspensions[J]. Journal of Colloid and Interface Science, 2015, 458: 200-208.
doi: 10.1016/j.jcis.2015.07.051 |
[29] |
Wang J, Nguyen A V. Foam drainage in the presence of solid particles[J]. Soft Matter, 2016, 12: 3004-3012.
doi: 10.1039/c6sm00028b pmid: 26877265 |
[30] |
Britan A, Liverts M, Ben-Dor G, et al. The effect of fine particles on the drainage and coarsening of foam[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 344: 15-23.
doi: 10.1016/j.colsurfa.2009.03.011 |
[31] |
Denkov N D. Mechanisms of foam destruction by oil-based antifoams[J]. Langmuir, 2004, 20: 9463-9505.
doi: 10.1021/la049676o |
[32] |
Lee J, Nikolov A, Wasan D. Stability of aqueous foams in the presence of oil: On the importance of dispersed vs solubilized oil[J]. Industrial & Engineering Chemistry Research, 2013, 52: 66-72.
doi: 10.1021/ie301102m |
[33] |
Koursari N, Johnson P, Parsa M, et al. Modelling of foamed emulsion drainage[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 600: 124915.
doi: 10.1016/j.colsurfa.2020.124915 |
[34] |
Salonen A, Lhermerout R, Rio E, et al. Dual gas and oil dispersions in water: production and stability of foamulsion[J]. Soft Matter, 2012, 8: 699-706.
doi: 10.1039/C1SM06537H |
[35] |
Schneider M, Zou Z, Langevin D, et al. Foamed emulsion drainage: Flow and trapping of drops[J]. Soft Matter, 2017, 13: 4132-4141.
doi: 10.1039/c7sm00506g pmid: 28555683 |
[36] |
Mensire R, Lorenceau E. Stable oil-laden foams: Formation and evolution[J]. Advances in Colloid and Interface Science, 2017, 247: 465-476.
doi: S0001-8686(17)30222-1 pmid: 28821347 |
[37] |
Yan Yongli, Shan Cheng, Wang Yao, et al. Effects of oil on aqueous foams: Electrical conductivity of foamed emulsions[J]. ChemPhysChem, 2014, 15: 3110-3115.
doi: 10.1002/cphc.201402219 pmid: 25056102 |
[38] | Stone H A, Koehler S A, Hilgenfeldt S, et al. Perspectives on foam drainage and the influence of interfacial rheology[J]. Journal of Physics: Condensed Matter, 2003, 15: 283-290. |
[39] |
Fameau A L, Salonen A. Effect of particles and aggregated structures on the foam stability and aging[J]. Comptes Rendus Physique, 2014, 15: 748-760.
doi: 10.1016/j.crhy.2014.09.009 |
[40] |
Behrens S H. Oil-coated bubbles in particle suspensions, capillary foams, and related opportunities in colloidal multiphase systems[J]. Current Opinion in Colloid & Interface Science, 2020, 50: 101384.
doi: 10.1016/j.cocis.2020.08.009 |
[1] | 张志升, 沈产量, 李建勋, 刘延强, 韩薇薇, 董三宝. 甜菜碱/AOS/Gemini季铵盐三元复合型泡排剂的研制与性能评价[J]. 日用化学工业(中英文), 2024, 54(3): 239-249. |
[2] | 李国峰, 刘凯楠, 莫文龙, 马腾. 页岩油藏渗吸驱油剂体系性能评价[J]. 日用化学工业(中英文), 2024, 54(3): 250-258. |
[3] | 侯仕达, 王志飞, 王亚魁, 李俊, 姜亚洁, 耿涛. 多阳离子位点季铵盐与AEC复配体系的应用性能研究[J]. 日用化学工业(中英文), 2024, 54(2): 131-138. |
[4] | 张红梅, 张永民. [芥酰胺苯甲酸][胆碱]离子液体表面活性剂的合成及性能研究[J]. 日用化学工业(中英文), 2024, 54(2): 149-155. |
[5] | 潘小红, 高梓琪, 陈真, 殷帅, 黄海萍, 胡斌. 我国化妆品产品稳定性研究与管理现状的探讨[J]. 日用化学工业(中英文), 2024, 54(2): 201-208. |
[6] | 刘佩, 潘婷, 裴晓梅, 宋冰蕾, 蒋建中, 崔正刚, Bernard P. Binks. 非离子-阴离子Bola型表面活性剂和纳米SiO2颗粒协同稳定的双重响应型O/W乳状液[J]. 日用化学工业(中英文), 2024, 54(1): 1-15. |
[7] | 艾浩康, 姜亚洁, 王亚魁, 张璐, 耿涛. 硬脂酸酯双子季铵盐的合成及性能研究[J]. 日用化学工业(中英文), 2024, 54(1): 16-23. |
[8] | 张婉萍, 林延忠, 张倩洁, 张冬梅, 蒋汶. Ca2+介导的月桂酰甲基牛磺酸钠相行为研究[J]. 日用化学工业(中英文), 2024, 54(1): 32-37. |
[9] | 王亚茹, 莫庭源, 赖红霞, 周悦, 谢嘉颖, 谭建华. 基于斑贴及稳定性试验剖析含烟酰胺化妆品皮肤刺激性成因[J]. 日用化学工业(中英文), 2024, 54(1): 51-56. |
[10] | 常世腾, 蔡小军, 郑延成, 刘雪瑾, 易晓, 蒋筑阳. 琥珀酸酯磺酸盐物化特性及其与甜菜碱复配体系界面性能[J]. 日用化学工业(中英文), 2023, 53(9): 989-998. |
[11] | 徐德荣,连威,熊金钊,康万利. 致密油藏表面活性剂渗吸影响因素研究[J]. 日用化学工业(中英文), 2023, 53(8): 857-864. |
[12] | 牛奇奇,吕其超,董朝霞,张风帆,王洪勃. 含蠕虫胶束的泡沫体系的性能研究进展[J]. 日用化学工业(中英文), 2023, 53(8): 915-924. |
[13] | 王佳锐,魏孝承,张春雪,陈昢圳,郑向群,王强. 水环境样品中表面活性剂检测方法研究进展[J]. 日用化学工业(中英文), 2023, 53(8): 925-934. |
[14] | 强学峰, 张莉, 郑斌, 侯倩倩, 燕坤. 无机盐KCl对离子型表面活性剂泡沫演化规律研究[J]. 日用化学工业(中英文), 2023, 53(7): 733-741. |
[15] | 邢环宇, 贾丽华, 赵振龙, 杨瑞, 郭祥峰. 含萘酰亚胺和烷基疏水基的新型表面活性剂合成及性能[J]. 日用化学工业(中英文), 2023, 53(7): 742-747. |
|