日用化学工业 ›› 2022, Vol. 52 ›› Issue (5): 558-565.doi: 10.3969/j.issn.1001-1803.2022.05.015
收稿日期:
2021-08-02
修回日期:
2022-04-26
出版日期:
2022-05-22
发布日期:
2022-05-24
通讯作者:
吴国鹏
Received:
2021-08-02
Revised:
2022-04-26
Online:
2022-05-22
Published:
2022-05-24
Contact:
Guopeng Wu
摘要:
由于纳米材料尺寸小、比表面积大,表面原子活性高且数量占比大,通过表面改性可在同一纳米材料上集成多种驱油功能,纳米驱油技术被认为是未来最具潜力的提高采收率技术之一。简要介绍了驱油纳米材料的性能特点,综述了零维、一维和二维纳米材料在油田驱油剂方面的研究与应用进展,讨论了纳米材料在提高采收率应用面临的四方面挑战,即纳米材料驱油理论有待突破、纳米材料制造成本高、油藏条件下纳米材料的分散稳定性以及纳米材料与采出液分离及循环利用。综合油田开发需求与纳米技术发展现状,提出未来油田纳米驱油技术“复合功能”与“智能化”的发展方向。“复合功能”是指通过化学改性在纳米材料上集成剥离原油、捕集、聚并油滴等多种功能;“智能化”是指借鉴超分子化学手段,设计合成在油/水界面处堆积密度可调的柔性纳米材料,赋予其在储层中“智能”调剖功能,达到扩大波及体积的目的。
中图分类号:
吴国鹏,张福玲. 驱油用纳米材料研究进展[J]. 日用化学工业, 2022, 52(5): 558-565.
Wu Guopeng,Zhang Fuling. Research progress of nanomaterials for oil displacement[J]. China Surfactant Detergent & Cosmetics, 2022, 52(5): 558-565.
[1] | Zhou C, Xiao Y, Zhang B. Progress of research work on chemical flooding technology in China[J]. China Surfactant Detergent & Cosmetics, 2011, 41 (2): 131-135. |
[2] | Yuan S, Wang Q. New progress and prospect of oilfields development technologies in China[J]. Petroleum Exploration and Development, 2018, 45 (4): 657-668. |
[3] |
Najeebullah L, Tarek G. Emerging applications of nanomaterials in chemical enhanced oil recovery: Progress and perspective[J]. Chinese Journal of Chemical Engineering, 2020, 28: 1995-2009.
doi: 10.1016/j.cjche.2020.05.019 |
[4] | Liu H, Jin X, Ding B. Application of nanotechnology in petroleum exploration and development[J]. Petroleum Exploration and Development, 2016, 43 (6): 1014-1021. |
[5] |
Jalal F, Sunil K. Nanoparticles behaviors in porous media: Application to enhanced oil recovery[J]. Journal of Molecular Liquids, 2020, 316: 113876-113896.
doi: 10.1016/j.molliq.2020.113876 |
[6] | Zhang J, Tian L, Zhang H. Research progress of enhancing oil recovery mechanism by using nanofluids[J]. Oilfield Chemistry, 2021, 38 (1): 184-190. |
[7] |
Nasr M S, Esmaeilnezhad E, Choi H J. Effect of silicon-based nanoparticles on enhanced oil recovery: Review[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 122: 241-259.
doi: 10.1016/j.jtice.2021.04.047 |
[8] | Zhu H, Xia J H, Sun Z G, et al. Application of nanometer silicon dioxide in tertiary oil recovery[J]. Acta Petrolei Sinica, 2006, 27 (6): 96-99. |
[9] | Shang D, Hou J, Cheng T. Flooding performance and optimization of injection parameters of SiO2 nanofluid in low permeability reservoirs[J]. Oilfield Chemistry, 2021, 38 (1): 137-142. |
[10] | He L, Luo J, Ding B, et al. Preparation and properties of nano oil displacement agent for low/ultra-low permeability reservoir[J]. Oilfield Chemistry, 2018, 35 (1): 81-90. |
[11] | Roustaei A, Bagherzadeh H. Experimental investigation of SiO2 nanoparticles on enhanced oil recovery of carbonate reservoirs[J]. Journal of Petroleum Exploration & Production Technology, 2015, 5 (1): 27-33. |
[12] |
Hendraningrat L, Torsaeter O. Effects of the initial rock wettability on silica-based nanofluid-enhanced oil recovery processes at reservoir temperatures[J]. Energy & Fuels, 2014, 28 (10): 6228-6241.
doi: 10.1021/ef5014049 |
[13] | Sharma T, Sangwai J S. Silica nanofluids in polyacrylamide with and without surfactant: viscosity, surface tension, and interfacial tension with liquid paraffin[J]. Journal of Petroleum Science & Engineering, 2017, 152: 575-585. |
[14] |
Maghzi A, Kharrat R, Mohebbi A, et al. The impact of silica nanoparticles on the performance of polymer solution in presence of salts in polymer flooding for heavy oil recovery[J]. Fuel, 2014, 123 (5): 123-132.
doi: 10.1016/j.fuel.2014.01.017 |
[15] | Maurya N K, Mandal A. Studies on behavior of suspension of silica nanoparticle in aqueous polyacrylamide solution for application in enhanced oil recovery[J]. Petroleum Science & Technology, 2016, 34 (5): 429-436. |
[16] | Ebrahimi M, Kharrat R, Moradi B. Experimental investigation of wettability alteration in reservoir rock using silica,alumina and titania nanoparticles[J]. Petroleum Research, 2018, 28 (99): 38-42. |
[17] | Ogolo N A, Olafuyi O A, Onyekonwu M O. Enhanced oil recovery using nanoparticles[J]. Society of Petroleum Engineers, 2012, 5: 44-45. |
[18] | Giraldo J, Benjumea P, Lopera S, et al. Wettability alteration of sandstone cores by alumina-based nanofluids[J]. Energy & Fuel, 2013, 27 (5): 3659-3665. |
[19] | Hendraningrat L, Li S, Torsaeter O. A coreflood investigation of nanofluid enhanced oil recovery[J]. Journal of Petroleum Science & Engineering, 2013, 11 (21): 128-138. |
[20] | Ehtesabi H, Ahadian M M, Taghikhani V, et al. Enhanced heavy oil recovery in sandstone cores using TiO2 nanofluids[J]. Energy & Fuels, 2013, 28 (1): 423-430. |
[21] |
Rezvani H, Khalilnezhad A, Ganji P, et al. How ZrO2 nanoparticles improve the oil recovery by affecting the interfacial phenomena in the reservoir conditions[J]. Journal of Molecular Liquids, 2018, 252: 158-168.
doi: 10.1016/j.molliq.2017.12.138 |
[22] |
Mohammadamin R, Azim K, Rahmatallah S, et al. Performance of environmental friendly water-based calcium carbonate nanofluid as enhanced recovery agent for sandstone oil reservoirs[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107644-107657.
doi: 10.1016/j.petrol.2020.107644 |
[23] | Moghaddam R N, Bahramian A, Fakhroueian Z, et al. Comparative study of using nanoparticles for enhanced oil recovery: Wettability alteration of carbonate rocks[J]. Energy & Fuels, 2015, 29 (4): 2111-2119. |
[24] |
Wu M, Wang Y, Wu W, et al. Preparation of functionalized water-soluble photoluminescent carbon quantum dots from petroleum coke[J]. Carbon, 2014, 78: 480-489.
doi: 10.1016/j.carbon.2014.07.029 |
[25] |
Li Y, Dai C, Zhou H. A novel nanofluid based on fluorescent carbon nanoparticles for enhanced oil recovery[J]. Industrial & Engineering Chemistry Research, 2017, 56 (44): 12464-12470.
doi: 10.1021/acs.iecr.7b03617 |
[26] |
Baragaua I, Lu Z, Power N P, et al. Continuous hydrothermal flow synthesis of S-functionalised carbon quantum dots for enhanced oil recovery[J]. Chemical Engineering Journal, 2021, 405: 126631-126643.
doi: 10.1016/j.cej.2020.126631 |
[27] |
Zhao M, Song X, Lv W, et al. The preparation and spontaneous imbibition of carbon-based nanofluid for enhanced oil recovery in tight reservoirs[J]. Journal of Molecular Liquids, 2020, 313: 113564-113571.
doi: 10.1016/j.molliq.2020.113564 |
[28] |
Wu Y, Cao M, Zhao Q, et al. Novel high-hydrophilic carbon dots from petroleum coke for boosting injection pressure reduction and enhancing oil recovery[J]. Carbon, 2021, 184: 186-194.
doi: 10.1016/j.carbon.2021.08.018 |
[29] |
Seyed H H, Hamed A, Mina K A, et al. An overview on the significance of carbon-based nanomaterials in upstream oil and gas industry[J]. Journal of Petroleum Science and Engineering, 2020, 186: 106783-106797.
doi: 10.1016/j.petrol.2019.106783 |
[30] | Soleimani H. Impact of carbon nanotubes based nanofluid on oil recovery efficiency using core flooding[J]. Results in Physics, 2018 (9): 39-48. |
[31] |
Chen C, Wang S, Kadhum M J, et al. Using carbonaceous nanoparticles as surfactant carrier in enhanced oil recovery: A laboratory study[J]. Fuel, 2018, 222: 561-568.
doi: 10.1016/j.fuel.2018.03.002 |
[32] |
AfzaliTabar M, Alaei M, Khojasteh R R, et al. Preference of multi-walled carbon nanotube (MWCNT) to single-walled carbon nanotube (SWCNT) and activated carbon for preparing silica nanohybrid pickering emulsion for chemical enhanced oil recovery (C-EOR)[J]. Journal of Solid State Chemistry, 2017, 245: 164-173.
doi: 10.1016/j.jssc.2016.10.017 |
[33] |
Gharibshahi R, Omidkhah M, Jafari A, et al. Hybridization of superparamagnetic Fe3O4 nanoparticles with MWCNTs and effect of surface modification on electromagnetic heating process efficiency: A microfluidics enhanced oil recovery study[J]. Fuel, 2020, 282: 118603-118617.
doi: 10.1016/j.fuel.2020.118603 |
[34] |
Grishkewich N, Mohammed N, Tang J, et al. Recent advances in the application of cellulose nanocrystals[J]. Current Opinion in Colloid & Interface Science, 2017, 29: 32-45.
doi: 10.1016/j.cocis.2017.01.005 |
[35] |
Su E, Li Q, Xu M, et al. Highly stable and thermo-responsive gel foams by synergistically combining glycyrrhizic acid nanofibrils and cellulose nanocrystals[J]. Journal of Colloid and Interface Science, 2021, 587: 797-809.
doi: 10.1016/j.jcis.2020.11.039 |
[36] |
Molnes S N, Torrijos I P, Strand S, et al. Sandstone injectivity and salt stability of cellulose nanocrystals (CNC) dispersions: Premises for use of CNC in enhanced oil recovery[J]. Industrial Crops and Products, 2016, 93: 152-160.
doi: 10.1016/j.indcrop.2016.03.019 |
[37] | Wei B, Li Q, Jin F, et al. The potential of a novel nanofluid in enhancing oil recovery[J]. Energy & Fuels, 2016, 30 (4): 157-168. |
[38] |
Li Q, Wei B, Lu L, et al. Investigation of physical properties and displacement mechanisms of surface-grafted nano-cellulose fluids for enhanced oil recovery[J]. Fuel, 2017, 207: 352-364.
doi: 10.1016/j.fuel.2017.06.103 |
[39] | Li Q, Wei B, Xue Y, et al. Improving the physical properties of nano-cellulose through chemical grafting for potential use in enhancing oil recovery[J]. Journal of Bioresources and Bioproducts, 2016, 4 (1): 186-191. |
[40] |
Raza S, Gates I D. Effect of cellulose nanocrystal nanofluid on displacement of oil in a Hele-Shaw cell[J]. Journal of Petroleum Science and Engineering, 2021, 196: 108068-108078.
doi: 10.1016/j.petrol.2020.108068 |
[41] |
Yin T, Yang Z, Dong Z, et al. Physicochemical properties and potential applications of silica-based amphiphilic Janus nanosheets for enhanced oil recovery[J]. Fuel, 2019, 237: 344-351.
doi: 10.1016/j.fuel.2018.10.028 |
[42] |
Yin T, Yang Z, Lin M, et al. Preparation of Janus nanosheets via reusable cross-linked polymer microspheres template[J]. Chemical Engineering Journal, 2019, 371: 507-515.
doi: 10.1016/j.cej.2019.04.093 |
[43] |
Yin T, Yang Z, Zhang F, et al. Assembly and mechanical response of amphiphilic Janus nanosheets at oil-water interfaces[J]. Journal of Colloid and Interface Science, 2021, 583: 214-221.
doi: 10.1016/j.jcis.2020.09.026 |
[44] |
Sikiru S, Rostami A, Soleimani H, et al. Graphene: outlook in the enhance oil recovery (EOR)[J]. Journal of Molecular Liquids, 2021, 321: 114519-114532.
doi: 10.1016/j.molliq.2020.114519 |
[45] |
Nasr M S, Esmaeilnezhad E, Allahbakhsh A, et al. Nitrogen-doped graphene quantum dot nanofluids to improve oil recovery from carbonate and sandstone oil reservoirs[J]. Journal of Molecular Liquids, 2021, 330: 115715-115727.
doi: 10.1016/j.molliq.2021.115715 |
[46] |
Raj I, Qu M, Xiao L, et al. Ultralow concentration of molybdenum disulfide nanosheets for enhanced oil recovery[J]. Fuel, 2019, 251: 514-522.
doi: 10.1016/j.fuel.2019.04.078 |
[47] |
Raj I, Lian T, Qu M, et al. An experimental investigation of MoS2 nanosheets stabilized foams for enhanced oil recovery application[J]. Colloids and Surfaces A, 2020, 606: 125420-125427.
doi: 10.1016/j.colsurfa.2020.125420 |
[48] | Fu L, Wang L, He L, et al. Preparation and its properties research of modified black phosphorus oil displacement agent[J]. Journal of Nanjing Normal University (Natural Science Edition), 2020, 43 (3): 48-53. |
[49] | Sun Y, Yang D, Shi L, et al. Properties of nanofluids and their applications in enhanced oil recovery: A comprehensive review[J]. Energy & Fuels, 2020, 34: 1202-1218. |
[1] | 徐婧, 范春霞. 改性TiO2纳米材料的制备及防晒化妆品的应用性能分析[J]. 日用化学工业(中英文), 2023, 53(1): 41-46. |
[2] | 冉立君,陈琪,陈钊,崔正刚. 高分子醇醚羧酸盐表面活性剂活性物含量的测定[J]. 日用化学工业, 2022, 52(4): 345-354. |
[3] | 陈琪,冉立君,陈钊,崔正刚. C16格尔伯特醇聚氧烷烯醚硫酸盐的制备及其界面性能研究[J]. 日用化学工业(中英文), 2022, 52(10): 1055-1061. |
[4] | 王在华,张军,冯嘉颖,刘牡丹,刘建国,陈涛. 临盘稠油木质素基自乳化驱油剂的研制及现场应用[J]. 日用化学工业, 2021, 51(8): 697-704. |
[5] | 耿铁,赵春花,刘雪婧,苏龙,郑利强,孙继超. 表面活性剂分子在油/水界面聚集行为:分子模拟研究进展[J]. 日用化学工业, 2019, 49(8): 537-544. |
[6] | 吴奥丽,郑利强,孙继超. 弱相互作用调控表面活性剂自组装(V)——在纳米材料制备方面的应用[J]. 日用化学工业, 2019, 49(5): 286-292. |
[7] | 韩明虎,张腊腊,武芸,张琪,胡浩斌. 纳米改性氟碳涂料的研究进展[J]. 日用化学工业, 2019, 49(5): 328-334. |
[8] | 李迎宾, 杨许召, 邹文苑, 徐清杰, 王军. 离子液体表面活性剂的合成与应用(Ⅹ)——在材料制备中的应用[J]. 日用化学工业, 2017, 47(10): 546-549. |
[9] | 赵婷婷, 胡俊, 刘红芹, 徐宝财. 表面活性剂的性能与应用(ⅩⅪ)——表面活性剂在化学反应过程及材料制备中的应用[J]. 日用化学工业, 2015, 45(9): 485-489. |
[10] | 康万利, 路遥, 于泱, 李哲, 杨红斌, 白宝君. 化学驱物理模型进展与应用[J]. 日用化学工业, 2015, 45(5): 285-290. |
[11] | 张金昌, 石磊, 郭新闻, 刘兆滨, 朱建民. 十六烷基三甲基溴化铵为模板剂在水/丙酮介质中合成纳米SiO2空心球[J]. 日用化学工业, 2015, 45(4): 201-205. |
[12] | 苏鹏权, 刘红芹, 徐宝财, 周雅文. 表面活性剂的性能与应用(Ⅵ)——表面活性剂的液晶及其应用[J]. 日用化学工业, 2014, 44(6): 312-316. |
[13] | 高南, 李国荣, 陈旭东. 双子表面活性剂的合成及应用研究进展[J]. 日用化学工业, 2014, 44(11): 644-651. |
|