日用化学工业 ›› 2021, Vol. 51 ›› Issue (4): 348-355.doi: 10.3969/j.issn.1001-1803.2021.04.013
吕博1(),燕永利1(
),杜春保1,朱西柱2,吴春生2,于长龙2
收稿日期:
2020-06-05
修回日期:
2021-02-25
出版日期:
2021-04-22
发布日期:
2021-04-27
通讯作者:
燕永利
作者简介:
吕 博(1995-),男,陕西咸阳人,硕士研究生,电话:17349261684;E-mail: 基金资助:
LV Bo1(),YAN Yong-li1(
),DU Chun-bao1,ZHU Xi-zhu2,WU Chun-sheng2,YU Chang-long2
Received:
2020-06-05
Revised:
2021-02-25
Online:
2021-04-22
Published:
2021-04-27
Contact:
Yong-li YAN
摘要:
采用常规表面活性剂或多相体系所形成的泡沫稳定性较差而难以满足众多工业领域的应用。近年来,利用微纳米晶体以形成具有超稳定特性的泡沫体系受到学术界的重视。因此,着重论述了晶体颗粒对泡沫的形成机制和稳定机制以及影响因素,如晶体颗粒的浓度、环境温度、粒径大小、溶剂性质等,并简要概括了晶体颗粒形成的泡沫在食品和材料领域的应用,同时指出了该领域今后的研究方向。
中图分类号:
吕博,燕永利,杜春保,朱西柱,吴春生,于长龙. 微纳米晶体对于泡沫形成和稳定的影响机制研究进展[J]. 日用化学工业, 2021, 51(4): 348-355.
LV Bo,YAN Yong-li,DU Chun-bao,ZHU Xi-zhu,WU Chun-sheng,YU Chang-long. Research progress in effects of micro- and nanocrystals on the foam formation and stability[J]. China Surfactant Detergent & Cosmetics, 2021, 51(4): 348-355.
[1] | Zhao Guoxi. Physical chemistry of surfactant [M]. Beijing: Peking University Press, 1984: 408. |
[2] | Chen Hongling, Wu Wei. Principle and application of particle stabilized emulsion and foam system (IV): Effect of synergistic effect of particles and surfactant on foam stability[J]. Journal of Basic Chemical Industry, 2013,43(4) : 17-22. |
[3] | Zhao Ruidong, WU Xiaodong, Xiong Chunming, et al. Research progress of foam oil at home and abroad[J]. Special Hydrocarbon Reservoirs, 2012,19(1) : 17-22. |
[4] | Yan yongli. Advances in the foaming and stabilization mechanisms of non-aqueous systems[J]. Applied Chemical Industry, 2016,45(11) : 2135-2138. |
[5] | Friberg S E. Foams from non-aqueous systems[J]. Current Opinion in Colloid & Interface Science, 2010,15(5) : 359-364. |
[6] | Blázquez C, Emond E, Schneider S, et al. Non-aqueous and crude oil foams[J]. Oil & Gas Science and Technology-Revued’IFP Energies Nouvelles, 2014,69(3) : 467-479. |
[7] | Golemanov K, Denkov N D, Tcholakova S, et al. Surfactant mixtures for control of bubble surface mobility in foam studies[J]. Langmuir, 2008,24(18) : 9956-9961. |
[8] | Fameau A L, Salonen A. Effect of particles and aggregated structures on the foam stability and aging[J]. Comptes Rendus Physique, 2014,15(8/9) : 748-760. |
[9] | Liu Zupeng, Li Zhaomin, Zheng Weibo, et al. Stability of multi-phase foam systems[J]. Journal of Petrochemical Colleges and Universities, 2012,25(4) : 42-46, 50. |
[10] | Vijayaraghavan K, Nikolov A, Wasan D. Foam formation and mitigation in a three-phase gas-liquid-particulate system[J]. Advances in Colloid & Interface Science, 2006,123-126:49-61. |
[11] | Cui Yanzhen. Foam properties of nano-CaCO3-surfactant mixed system[D]. Wuxi: Jiangnan University, 2009. |
[12] | Zhao Lina, Kong Zhiguo, Wang Xiuyan. Preparation and surface modification of self-assembled flake nano calcium carbonate[J]. Advances in Chemical Industry, 2010 ( 12) : 2346-2350. |
[13] | Liu Shejiang, Yu Yuanwen, He Yuji, et al. Development and application of a variety of crystalline nanometer modified calcium carbonate[J]. Inorganic Salt Industry, 2002,34(2) : 11-13. |
[14] | Tzoumaki M V, Karefyllakis D, Moschakis T, et al. Aqueous foams stabilized by chitin nanocrystals[J]. Soft Matter, 2015,11(31) : 6245-6253. |
[15] |
Hunter T N, Pugh R J, Franks G V, et al. The role of particles in stabilising foams and emulsions[J]. Advances in Colloid & Interface Science, 2008,137(2) : 57-81.
pmid: 17904510 |
[16] | Wang F C, Marangoni A G. Advances in the application of food emulsifier α-gel phases: Saturated monoglycerides, polyglycerol fatty acid esters, and their derivatives[J]. Journal of Colloid and Interface Science, 2016,483(1) : 394-403. |
[17] | Shrestha R G, Shrestha L K, Solans C, et al. Nonaqueous foam with outstanding stability in diglycerol mono myristate/olive oil system[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010,353(2/3) : 157-165. |
[18] | Shrestha L K, Aramaki K, Kato H, et al. Foaming properties of monoglycerol fatty acid esters in nonpolar oil systems[J]. Langmuir, 2006,22(20) : 8337-8345. |
[19] | King E G. Foam formation in organic liquids[J]. The Journal of Physical Chemistry, 1944,48(3) : 141-154. |
[20] | Binks B P, Garvey E J, Vieira J. Whipped oil stabilised by surfactant crystals[J]. Chemical Science, 2016,7(4) : 2621-2632. |
[21] | Fameau A L, Lam S, Arnould A, et al. Smart nonaqueous foams from Lipid-Based Oleogel[J]. Langmuir, 2015,31(50) : 13501-13510. |
[22] | Fameau A L, Saint-Jalmes A. Non-aqueous foams: current understanding on the formation and stability mechanisms[J]. Advances in Colloid and Interface Science, 2017,247(2) : 454-464. |
[23] | Patel A R. Stable ‘arrested’ non-aqueous edible foams based on food emulsifiers[J]. Food & Function, 2017,8(6) : 2115-2120. |
[24] | Karp K. Fabrication and characterization of arrested non-aqueous foam[D]. Gent: Lodz University of Technology, 2016. |
[25] | Mishima S, Suzuki A, Sato K, et al. Formation and microstructures of whipped oils composed of vegetable oils and high-melting fat crystals[J]. Journal of the American Oil Chemists Society, 2016,93(11) : 1453-1466. |
[26] | Binks B P, Marinopoulos I. Ultra-stable self-foaming oils[J]. Food Research International, 2017,95(5) : 28-37. |
[27] | Heymans R, Tavernier I, Dewettinck K, et al. Crystal stabilization of edible oil foams[J]. Trends in Food Science & Technology, 2017,69(8) : 13-24. |
[28] | Goibier L, Pillement C, Monteil J, et al. Emulsification of non-aqueous foams stabilized by fat crystals: towards novel air-in-oil-in-water food colloids[J]. Food Chemistry, 2019,293:49-56. |
[29] | Tuyen Truong, Sangeeta Prakash, Bhesh Bhandari. et al. Effects of crystallisation of native phytosterols and monoacylglycerols on foaming properties of whipped oleogels[J]. Food Chemistry, 2019,285:86-93. |
[30] | Heymans R, Tavernier I, Danthine S, et al. Food-grade monoglyceride oil foams: the effect of tempering on foamability, foam stability and rheological properties[J]. Food & Function, 2018,9(6) : 3143-3154. |
[31] | Lei M, Zhang N, Lee W J, et al. Non-aqueous foams formed by whipping diacylglycerol stabilized oleogel[J]. Food Chemistry, 2020,312(5) : 126047. |
[32] | Su Y, Ma L, Li Q, et al. Preparation of food-grade super stable foam based on multi-dimensional assembly of natural glycyrlic acid nanofibers[J]. Modern Food Science and Technology, 2020,36(3) : 205-210. |
[33] | Brun M, Delample M, Harte E, et al. Stabilization of air bubbles in oil by surfactant crystals: A route to produce air-in-oil foams and air-in-oil-in-water emulsions[J]. Food Research International, 2015,67(1) : 366-375. |
[34] | Sanders P A. Stabilization of aerosol emulsions and foams[J]. Journal of the Society of Cosmetic Chemists, 1970,21(6) : 377-391. |
[35] | Ross S, Nishioka G. Foaminess of binary and ternary solutions[J]. The Journal of Physical Chemistry, 1975,79(15) : 1561-1565. |
[36] | Zhang L, Mikhailovskaya A, Yazhgur P, et al. Precipitating sodium dodecyl sulfate to create ultrastable and stimulable foams[J]. Angewandte Chemie International Edition, 2015,54(33) : 9533-9536. |
[37] | Zhang L, Tian L, Du H, et al. Foams stabilized by surfactant precipitates: criteria for ultrastability[J]. Langmuir, 2017,33(29) : 7305-7311. |
[38] |
Gunes D Z, Murith M, Godefroid J, et al. Oleofoams: Properties of crystal-coated bubbles from whipped oleogels: evidence for pickering stabilization[J]. Langmuir, 2017,33(6) : 1563-1575.
pmid: 28139122 |
[39] | Chen Zhao, Jiang Jianzhong, Cui Zhenggang. Surfactant-nanoparticle interaction and intelligent system construction (II) Opposite charge surfactant-nanoparticle interaction (I): Switching transfer construction of switching Pickering emulsion and Pickering foam[J]. Journal of Daily-use Chemical Industry, 2019,49(8) : 492-502. |
[40] | Kunieda H, Shrestha L K, Acharya D P, et al. Super‐stable nonaqueous foams in diglycerol fatty acid esters: non polar oil systems[J]. Journal of Dispersion Science and Technology, 2007,28(1) : 133-142. |
[41] |
Bauget F, Langevin D, Lenormand R. Dynamic surface properties of asphaltenes and resins at the oil-air interface[J]. Journal of Colloid &Interface Science 2001,239(2) : 501-508.
doi: 10.1006/jcis.2001.7566 pmid: 11427016 |
[42] | Binks B P, Shi H. Aqueous foams in the Presence of surfactant crystals[J]. Langmuir, 2020,36(4) : 991-1002. |
[43] | Saremnejad F, Mohebbi M, Koocheki A. Practical application of nonaqueous foam in the preparation of a novel aerated reduced-fat sauce[J]. Food and Bioproducts Processing, 2020,119(11) : 216-225. |
[44] | Goibier L, Pillement C, Monteil J, et al. Emulsification of non-aqueous foams stabilized by fat crystals: Towards novel air-in-oil-in-water food colloids[J]. Food Chemistry, 2019,293(4) : 49-56. |
[45] | Gergely V, Curran D C, Clyne T W. The foamcapr process: foaming of aluminium mmcs by the chalk-aluminium reaction in precursors[J]. Composites Science and Technology, 2003,63(16) : 2301-2310. |
[46] | Huang Jie, Lei Yun, Wang Lili, et al. Preparation of hydroxyapatite whisk honeycomb scaffold by foaming method[J]. Chinese Journal of Intraocular Lens, 2016,49(12) : 2862-2865. |
[47] | Chen Y, Huang X, Zhang S, et al. Shaping of metal-organic frameworks: from fluid to shaped bodies and robust foams[J]. Journal of the American Chemical Society, 2016,138(34) : 10810-10813. |
[1] | 张志升, 沈产量, 李建勋, 刘延强, 韩薇薇, 董三宝. 甜菜碱/AOS/Gemini季铵盐三元复合型泡排剂的研制与性能评价[J]. 日用化学工业(中英文), 2024, 54(3): 239-249. |
[2] | 潘小红, 高梓琪, 陈真, 殷帅, 黄海萍, 胡斌. 我国化妆品产品稳定性研究与管理现状的探讨[J]. 日用化学工业(中英文), 2024, 54(2): 201-208. |
[3] | 王亚茹, 莫庭源, 赖红霞, 周悦, 谢嘉颖, 谭建华. 基于斑贴及稳定性试验剖析含烟酰胺化妆品皮肤刺激性成因[J]. 日用化学工业(中英文), 2024, 54(1): 51-56. |
[4] | 牛奇奇,吕其超,董朝霞,张风帆,王洪勃. 含蠕虫胶束的泡沫体系的性能研究进展[J]. 日用化学工业(中英文), 2023, 53(8): 915-924. |
[5] | 强学峰, 张莉, 郑斌, 侯倩倩, 燕坤. 无机盐KCl对离子型表面活性剂泡沫演化规律研究[J]. 日用化学工业(中英文), 2023, 53(7): 733-741. |
[6] | 邢环宇, 贾丽华, 赵振龙, 杨瑞, 郭祥峰. 含萘酰亚胺和烷基疏水基的新型表面活性剂合成及性能[J]. 日用化学工业(中英文), 2023, 53(7): 742-747. |
[7] | 周媛, 杨秀全, 张军, 白亮, 吴志宇. 不同酯化度烷基糖苷磺基琥珀酸酯盐的合成与性能[J]. 日用化学工业(中英文), 2023, 53(7): 765-772. |
[8] | 王华正, 张亮, 康鑫, 康万利, 李哲, 杨红斌. CO2对长庆采出油水物性影响及乳状液稳定机理[J]. 日用化学工业(中英文), 2023, 53(6): 617-624. |
[9] | 张佩亮, 燕永利, 吕博, 曹玉霞, 吴春生, 贺炳成. CaCO3纳米晶体稳定非水相泡沫实验研究[J]. 日用化学工业(中英文), 2023, 53(6): 642-648. |
[10] | 甄恩龙, 张雯, 钱真, 杜若彤, 王洋. 乳化热固性树脂体系构建及其封堵性能评价[J]. 日用化学工业(中英文), 2023, 53(6): 649-657. |
[11] | 丁正青, 吴颖异, 王维运, 黄旭娟, 蔡照胜. 羟乙基纤维素/纳米纤维素稳定的Pickering乳液及其流变特性研究[J]. 日用化学工业(中英文), 2023, 53(3): 245-252. |
[12] | 杨超, 童志明, 王占生, 陈武. 聚合物及固体颗粒对原油乳状液稳定性影响机制研究[J]. 日用化学工业(中英文), 2023, 53(10): 1156-1165. |
[13] | 郭芳. 乳化剂及增稠剂对低黏液晶乳液的影响[J]. 日用化学工业(中英文), 2023, 53(1): 16-23. |
[14] | 燕永利,蔡雨秀,豆龙龙,曹玉霞. 复杂泡沫体系排液动力学研究进展[J]. 日用化学工业, 2022, 52(9): 1011-1015. |
[15] | 董蕾蕾,黄天怿,段国兰,陈晗俊,张婉萍,张倩洁. 流变调节剂对W/O型乳液稳定性和流变性的影响[J]. 日用化学工业, 2022, 52(5): 457-467. |
|