日用化学工业 ›› 2021, Vol. 51 ›› Issue (4): 272-280.doi: 10.3969/j.issn.1001-1803.2021.04.002
陈凤凤1,2(),齐佳悦1,2,倪鑫炯1,2,李云兴1,2,杨成1,2,孙亚娟1,2(
)
收稿日期:
2021-03-18
出版日期:
2021-04-22
发布日期:
2021-04-27
通讯作者:
孙亚娟
作者简介:
陈凤凤(1984-),江苏人,实验师,电话:13382887218,E-mail: 基金资助:
CHEN Feng-feng1,2(),QI Jia-yue1,2,NI Xin-jiong1,2,LI Yun-xing1,2,YANG Cheng1,2,SUN Ya-juan1,2(
)
Received:
2021-03-18
Online:
2021-04-22
Published:
2021-04-27
Contact:
Ya-juan SUN
摘要:
在水包油和油包水乳液的基础上,综述了水包水乳液制备的技术发展。首先简单概述了水包水乳液的研究现状,并介绍了水包水乳液在形貌、粒径上的调控,深入探讨了乳液增强水包水乳液的稳定性。最后介绍了水包水乳液在制备微凝胶、活性物包载递送等领域的应用前景,展望了水包水乳液未来的发展方向。文章为基于水包水乳液的制备和应用提供一定的参考和借鉴。
中图分类号:
陈凤凤,齐佳悦,倪鑫炯,李云兴,杨成,孙亚娟. 化妆品乳液及乳化新技术(Ⅱ)——水包水乳液的构建及其应用[J]. 日用化学工业, 2021, 51(4): 272-280.
CHEN Feng-feng,QI Jia-yue,NI Xin-jiong,LI Yun-xing,YANG Cheng,SUN Ya-juan. Cosmetic emulsions and new technologies of emulsification (II) Construction and application of water-in-water emulsions[J]. China Surfactant Detergent & Cosmetics, 2021, 51(4): 272-280.
[1] | Beijerinck M W. Ueber eine Eigentümlichkeit der löslichen Stärke[J]. Zentralbl Bakteriol Parasitenkd Infekt, 1896,2:697-699. |
[2] | Heriberto C J. Theory of phase formation in aqueous two-phase systems[J]. Journal of Chromatography B: Biomedical Sciences and Applications, 1996,680:3-30. |
[3] |
Hatti-Kaul R. Aqueous two-phase systems: A general overview[J]. Molecular Biotechnology, 2001,19:269-277.
pmid: 11721623 |
[4] | Jordi E. Water-in-water (W/W) emulsions[J]. Current Opinion in Colloid & Interface Science, 2016,25:109-119. |
[5] | Grinberg V Y, Tolstoguzov V B. Thermodynamic incompatibility of proteins and polysaccharides in solutions[J]. Food Hydrocolloids, 1997,11(2) : 145-158. |
[6] | Piculell L, Lindman B. Association and segregation in aqueous polymer/polymer, polymer/surfactant, and surfactant/surfactant mixtures: Similarities and differences[J]. Advances in Colloid & Interface Science, 1992,41:149-178. |
[7] | Norton I T, Frith W J. Microstructure design in mixed biopolymer composites[J]. Food Hydrocolloids, 2001,15(4-6):543-553. |
[8] | Polyakov V I, Grinberg V Y, Tolstoguzov V B. Thermodynamic incompatibility of proteins[J]. Food Hydrocolloids, 1997,11(2) : 171-180. |
[9] | Antonov Y A, Moldenaers P. Structure formation and phase-separation behaviour of aqueous casein-alginate emulsions in the presence of strong polyelectrolyte[J]. Food Hydrocolloids, 2011,25(3) : 350-360. |
[10] | Antonov Y A, Wolf B A, Moldenaers P. Inducing mixing of water-in water bsa/dextran emulsion by a strong polyelectrolyte[J]. Food Hydrocolloids, 2015,43:243-251. |
[11] | Cheung S H, Varnell J, Weitz D A. Microfluidic fabrication of water-in-water (w/w) jets and emulsions[J]. Biomicrofluidics, 2012,6(1) : 12808-128089. |
[12] | Moon B U, Abbasi N, Jones S G, et al. Water-in-water droplets by passive microfluidic flow focusing[J]. Analytical Chemistry, 2016,88:3982-3989. |
[13] | Stokes J R, Wolf B, Frith W J. Phase-separated biopolymer mixture rheology: Prediction using a viscoelastic emulsion model[J]. Journal of Rheology, 2001,45(5) : 1173-1191. |
[14] | Zhang J, Jongkook. Water-in-water pickering emulsion stabilized by polydopamine particles and crosslinking[J]. Biomacromolecules, 2019,20:204-211. |
[15] |
Tea L, Nicolai T, Renou F. Stabilization of water-in-water emulsions by linear homo-polyelectrolytes[J]. Langmuir, 2019,35(27) : 9029-9036.
pmid: 31192605 |
[16] | Butler M F, Heppenstall-Butler M. Phase separation in gelatin/dextran and gelatin/maltodextrin mixtures[J]. Food Hydrocolloids, 2003,17(6) : 815-830. |
[17] | Spyropoulos F, Frith W J, Norton I T, et al. Sheared aqueous two-phase biopolymer-surfactant mixtures[J]. Food Hydrocolloids, 2008,22(1) : 121-129. |
[18] | Poortinga A T. Microcapsules from self-assembled colloidal particles using aqueous phase-separated polymer solutions[J]. Langmuir, 2008,24(5) : 1644-1647. |
[19] | Schmidt B V K J. Double hydrophilic block copolymer self‐assembly in aqueous solution[J]. Macromolecular Chemistry and Physics, 2018,219:1700494. |
[20] |
Keating C D. Aqueous phase separation as a possible route to compartmentalization of biological molecules[J]. Accounts of Chemical Research, 2012,45(12) : 2114-2124.
pmid: 22330132 |
[21] | Mora-Huertas C E, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery[J]. International Journal of Pharmaceutics, 2010,385(1/2):113-142. |
[22] | Pichavant L López-González M J Favereaux A, et al. Thermosensitive polynorbornene poly(ethylene oxide) nanoparticles loaded with oligodnas: An innovative approach for acting on cancer-associated pain[J]. Polymer Chemistry, 2018,9:362-371. |
[23] |
Gaitzsch J, Huang X, Voit B. Engineering functional polymer capsules toward smart nanoreactors[J]. Chemical Reviews, 2016,116:1053-1093.
pmid: 26322859 |
[24] | Mark V, Joeri O, Ingo S J, et al. Water-in-water emulsions stabilized by nanoplates[J]. ACS Macro Letters, 2015,4(9) : 965-968. |
[25] |
Maestro A, Gutiérrez J M, Santamaría E, et al. Rheology of water-in-water emulsions: Caseinate-pectin and caseinate-alginate systems[J]. Carbohydrate Polymers, 2020,249:116799.
pmid: 32933657 |
[26] | Antonov Y A, Puyvelde P V, Moldenaers P. Interfacial tension of aqueous biopolymer mixtures close to the critical point[J]. International Journal of Biological Macromolecules, 2004,34(1/2):29-35. |
[27] | Scholten E, Visser J E, Sagis L M C, et al. Ultralow interfacial tensions in an aqueous phase-separated gelatin/dextran and gelatin/gum arabic system: A comparison[J]. Langmuir, 2004,20(6) : 2292-2297. |
[28] |
Vis M, Peters V F D, Blokhuis E M, et al. Decreased interfacial tension of demixed aqueous polymer solutions due to charge[J]. Physical Review Letters, 2015,115(7) : 078303.
doi: 10.1103/PhysRevLett.115.078303 pmid: 26317748 |
[29] | Vis M, Peters V F D, Blokhuis E M, et al. Effects of electric charge on the interfacial tension between coexisting aqueous mixtures of polyelectrolyte and neutral polymer[J]. Macromolecules, 2015,48:7335-7345. |
[30] | Buzza D M A, Fletcher P D I, Georgiou T K, et al. Water-in-water emulsions based on incompatible polymers and stabilized by triblock copolymers-templated polymersomes[J]. Langmuir, 2013,29(48) : 14804-14814. |
[31] |
Gonzalez-Jordan A, Nicolai T, Benyahia L. Influence of the protein particle morphology and partitioning on the behavior of particle-stabilized water-in-water emulsions[J]. Langmuir, 2016,32:7189-7197.
doi: 10.1021/acs.langmuir.6b01993 pmid: 27333940 |
[32] |
Ben A E, Cochereau R, Dechance C, et al. Water-in-water emulsion gels stabilized by cellulose nanocrystals[J]. Langmuir, 2018,34:6887-6893.
pmid: 29779373 |
[33] | Murray B S, Phisarnchananan N. The effect of nanoparticles on the phase separation of waxy corn starch+locust bean gum or guar gum[J]. Food Hydrocolloids, 2014,42:92-99. |
[34] | Firoozmand H, Rousseau D. Tailoring the morphology and rheology of phase-separated biopolymer gels using microbial cells as structure modifiers[J]. Food Hydrocolloids, 2014,42:204-214. |
[35] |
Nguyen B T, Nicolai T, Benyahia L. Stabilization of water-in-water emulsions by addition of protein particles[J]. Langmuir, 2013,29(34) : 10658-10664.
pmid: 23895275 |
[36] | Jordán A. New water/water emulsions stabilized by pickering effect. Cristallography[D]. Le Mans: Université du Maine, 2018. |
[37] | Franssen O, Hennink W E. A novel preparation method for polymeric microparticles without the use of organic solvents[J]. International Journal of Pharmaceutics, 1998,168(1) : 1-7. |
[38] | Franssen O, Stenekes R J H, Hennink W E. Controlled release of a model protein from enzymatically degrading dextran microspheres[J]. Journal of Controlled Release, 1999,59(2) : 219-228. |
[39] |
Nguyen B T, Wang W, Saunders B R, et al. pH-responsive water-in-water pickering emulsions[J]. Langmuir, 2015,31(12) : 3605-3611.
pmid: 25743065 |
[40] | Souza B S, Marcelino H R, Francisco Alexandrino J, et al. Water-in-water emulsion as a new approach to produce mesalamine-loaded xylan-based microparticles[J]. Applied Sciences, 2019,9(17) : 3519. |
[41] | Derya A, Seda K. Water-in-water emulsion based synjournal of hydrogel nanospheres with tunable release kinetics[J]. JOM, 2017,69(7) : 1185-1194. |
[42] |
Chen J F, Guo J, Liu S H, et al. Zein Particle-Stabilized Water-In-Water Emulsion as a Vehicle for Hydrophilic Bioactive Compound Loading of Riboflavin[J]. Journal of Agricultural and Food Chemistry, 2019,67:9926-9933.
doi: 10.1021/acs.jafc.9b02415 pmid: 31398027 |
[43] |
Dewey D C, Strulson C A, Cacace D N, et al. Bioreactor droplets from liposome-stabilized all-aqueous emulsions[J]. Nature Communications, 2014,5:4670.
pmid: 25140538 |
[44] | Cacace D, Rowland A, Stapleton J J, et al. Aqueous emulsion droplets stabilized by lipid vesicles as microcompartments for biomimetic mineralization[J]. Langmuir, 2015: 150930192053002. |
[1] | 潘小红, 高梓琪, 陈真, 殷帅, 黄海萍, 胡斌. 我国化妆品产品稳定性研究与管理现状的探讨[J]. 日用化学工业(中英文), 2024, 54(2): 201-208. |
[2] | 王亚茹, 莫庭源, 赖红霞, 周悦, 谢嘉颖, 谭建华. 基于斑贴及稳定性试验剖析含烟酰胺化妆品皮肤刺激性成因[J]. 日用化学工业(中英文), 2024, 54(1): 51-56. |
[3] | 王雪娇, 杜丽娟, 徐元喜. 液体洗涤蛋白酶稳定剂筛选方法开发[J]. 日用化学工业(中英文), 2023, 53(7): 796-801. |
[4] | 王华正, 张亮, 康鑫, 康万利, 李哲, 杨红斌. CO2对长庆采出油水物性影响及乳状液稳定机理[J]. 日用化学工业(中英文), 2023, 53(6): 617-624. |
[5] | 甄恩龙, 张雯, 钱真, 杜若彤, 王洋. 乳化热固性树脂体系构建及其封堵性能评价[J]. 日用化学工业(中英文), 2023, 53(6): 649-657. |
[6] | 丁正青, 吴颖异, 王维运, 黄旭娟, 蔡照胜. 羟乙基纤维素/纳米纤维素稳定的Pickering乳液及其流变特性研究[J]. 日用化学工业(中英文), 2023, 53(3): 245-252. |
[7] | 杨超, 童志明, 王占生, 陈武. 聚合物及固体颗粒对原油乳状液稳定性影响机制研究[J]. 日用化学工业(中英文), 2023, 53(10): 1156-1165. |
[8] | 郭芳. 乳化剂及增稠剂对低黏液晶乳液的影响[J]. 日用化学工业(中英文), 2023, 53(1): 16-23. |
[9] | 燕永利,蔡雨秀,豆龙龙,曹玉霞. 复杂泡沫体系排液动力学研究进展[J]. 日用化学工业, 2022, 52(9): 1011-1015. |
[10] | 董蕾蕾,黄天怿,段国兰,陈晗俊,张婉萍,张倩洁. 流变调节剂对W/O型乳液稳定性和流变性的影响[J]. 日用化学工业, 2022, 52(5): 457-467. |
[11] | 徐杰,祝愿,徐项亮,鲍红洁. 日用化学品泡沫性能的多维度评价方法研究[J]. 日用化学工业, 2022, 52(5): 506-513. |
[12] | 王朋辉,王伟贤,曾晖,芮泽宝. 碱性蛋白酶洗涤稳定性提高的研究进展[J]. 日用化学工业, 2022, 52(2): 180-189. |
[13] | 郭华,徐进,何云平,许虎君. 椰油酰水解燕麦蛋白钾对氨基酸洁面膏的性能影响[J]. 日用化学工业(中英文), 2022, 52(12): 1307-1313. |
[14] | 张虎成,杨国伟,杨军,范海涛,罗帅,刘霖颖. 虫草素纳米乳液制备及对皮肤光老化修复机制研究[J]. 日用化学工业(中英文), 2022, 52(10): 1072-1080. |
[15] | 沈永强,孙亚娟,杨成,王靖. 桃仁分离蛋白颗粒的制备及其乳化性能研究[J]. 日用化学工业, 2021, 51(9): 809-816. |
|