[1] |
Zhang P, Sun Y, Wang X, et al. Selective decontamination of textile thiazine dyes by sulfite promotion: Reaction kinetics and activation mechanism[J]. Separation and Purification Technology, 2024, 346: 127552.
|
[2] |
Mao J E, Chen H Y, Xu X Y, et al. Assessing greenhouse gas emissions from the printing and dyeing wastewater treatment and reuse system: Potential pathways towards carbon neutrality[J]. The Science of the Total Environment, 2024, 927: 172301.
|
[3] |
杜瑞成, 李燕, 王霆, 等. 纳米TiO2光催化剂改性研究进展[J]. 化学通报, 2023, 86 (10) : 1172-1180.
|
[4] |
Shi S, Jia M M, Li M S, et al. ZnO@g-C3N4 S-scheme photocatalytic membrane with visible-light response and enhanced water treatment performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 667: 131259.
|
[5] |
Wang X, Jiang P, Dai X J, et al. Carboxylated lamellar wood sponge enables high loading and uniform dispersion of MIL-53(Al) for efficient organic dye adsorption[J]. Carbohydrate Polymers, 2025, 356: 123400.
|
[6] |
Lu J, Lv X Y, Chen Q Y. Electrolyte reactivity on electrode surfaces for active species formation and reactive Red X-3B degradation in electrochemical treatment of dyeing wastewater[J]. Journal of Environmental Management, 2025, 375: 124197.
|
[7] |
Zhao Y, Chen L, Zuo Y, et al. Boron nitride modified PAN ultrafiltration membranes with im-proved water permeance and dye rejection performance[J]. Desalination and Water Treatment, 2025, 321: 100962.
|
[8] |
马以宏, 陈兴涛, 汤雷. 化学混凝-TiO2/g-C3N5光催化降解处理印刷废水[J]. 无机盐工业, 2024, 56 (10) : 151-158.
|
[9] |
刘思乐, 洪雯雯, 单译, 等. Zr基MOFs材料UiO-66-NH2负载g-C3N4催化剂的制备及光催化性能[J]. 印染, 2024, 50 (3) : 15-19.
|
[10] |
唐贝. ZnO/g-C3N4异质结光催化材料的制备及对吡啶的降解[J]. 无机盐工业, 2024, 56 (4) : 133-142.
|
[11] |
Yin H F, Yuan C Y, Lu H J, et al. The interface design of (0D/2D/1D) AgI/BiOI/C3N5 dual Z-scheme heterostructures with efficient visible-light-driven photocatalytic activity[J]. Separation and Purification Technology, 2023, 308: 122815.
|
[12] |
Han B, Ju D C, Chen Z, et al. Controllable preparation of TiO2 nanoparticles using deep eutectic solvents and their photocatalytic degradation of dyeing wastewater[J]. Journal of Crystal Growth, 2025, 656: 128104.
|
[13] |
Yang Y Q, Ma G S, An Z J, et al. Preparation of recyclable g-C3N4/TiO2 heterojunction/alginate hydrogel microbeads and investigation of their adsorption-photocatalytic properties[J]. Journal of Hazardous Materials Advances, 2025, 18: 100650.
|
[14] |
Liu S L, Bu Y F, Cheng S, et al. Synthesis of TiO2/g-C3N5 heterojunction for photocatalytic degradation of methylene blue wastewater under visible light irradiation: Mechanism analysis[J]. Diamond and Related Materials, 2023, 136: 110062.
|
[15] |
胡晓霞, 张彩云, 刘保江. 水热法制备WO3/TiO2复合光催化材料及其光催化性能[J]. 印染, 2020, 46 (11) : 12-16, 26.
|
[16] |
Pandeya S, Ding R, Ma Y F, et al. Self-standing CdS/TiO2 Janus nanofiberous membrane: COD removal, antibacterial activity and photocatalytic degradation of organic pollutants[J]. Journal of Environmental Chemical Engineering, 2024, 12: 112521.
|
[17] |
Liao W N, Yang Z Q, Wang Y, et al. Novel Z-scheme Nb2O5/C3N5 photocatalyst for boosted degradation of tetracycline antibiotics by visible light-assisted activation of persulfate system[J]. Chemical Engineering Journal, 2023, 478: 147346.
|
[18] |
Liu T Y, Yang G J, Wang W, et al. Preparation of C3N5 nanosheets with enhanced performance in photocatalytic methylene blue (MB) degradation and H2-evolution from water splitting[J]. Environmental Research, 2020, 188: 109741.
|
[19] |
Bi K J, Wang M, Li H Y. Synthesis of S scheme 2D/2D g-C3N5/g-C3N4 heterojunction for photocatalytic degradation tetracycline[J]. Surfaces and Interfaces, 2024, 50: 104487.
|
[20] |
Yang B, Lu L L, Zhang Q, et al. Enhanced built-in electric fields in alkali metal-doped C3N5 enable sustainable molecular oxygen activation for water purification[J]. Chemical Engineering Journal, 2025, 509: 161236.
|
[21] |
Wang Q, Wang T, Li H, et al. Role of leachate characteristics on carbon dots/TiO2 photocatalytic and bactericidal inactivation mechanism[J]. Journal of Environmental Chemical Engineering, 2025, 13: 116022.
|
[22] |
Wang J, Chen C C, Zhao Z H, et al. Construction of N-doped g-C3N4/NH2-MIL-125(Ti) S-scheme heterojunction for enhanced photocatalytic degradation of organic pollutants: DFT calculation and mechanism study[J]. Journal of Alloys and Compounds, 2022, 922: 166288.
|
[23] |
Paria H E, Aziz H Y. A review on impressive Z and S-scheme photocatalysts composed of g-C3N4 for detoxification of antibiotics[J]. FlatChem, 2024, 43: 100597.
|
[24] |
Song M G, Li M C, Li H F, et al. Novel through-holes g-C3N4/BiOBr S-scheme heterojunction: Charge relocation mechanism and DFT insights[J]. Surfaces and Interfaces, 2023, 41: 103227.
|
[25] |
Chen X X, Yu F Q, Gong F Z, et al. Preparation of 3D porous CeO2/g-C3N4 photocatalyst via facile one-step calcination for rapid removing of tetracycline[J]. Vacuum, 2023, 213: 112090.
|
[26] |
Zhang G X, Li S L, Jiang H F. Facile method for improving the catalytic performance of g-C3N4 by electrostatic self-assembled with Bi2MoO6/kaolinite composite[J]. Materials Letters, 2023, 347: 134594.
|
[27] |
马润东, 郭雄, 施凯旋, 等. MoS2/g-C3N4 S型异质结的构建及光催化性能研究[J]. 无机材料学报, 2023, 38 (10) : 1176-1182.
doi: 10.15541/jim20230096
|
[28] |
Zhao H J, Wu R J, Yu Z, et al. Synthesis of BiPO4/SnO2 heterojunction for the photocatalytic degradation of RhB under visible light emitting diode irradiation[J]. Journal of the Chinese Chemical Society, 2021, 68: 1663-1672.
|
[29] |
Feng M N, Qiu H Y, Jiang H M, et al. Accompanying Bi clusters can effectively enhance the photocatalytic H2O2 production performance of Bi2Sn2O7/g-C3N4 S-Scheme heterostructures[J]. Carbon, 2025, 238: 120253.
|
[30] |
Gao R Q, Shen R C, Huang C, et al. 2D/2D Hydrogen-bonded organic frameworks/covalent organic frameworks S-Scheme heterojunctions for photocatalytic hydrogen evolution[J]. Angewandte Chemie, 2024, 137: 414299.
|
[31] |
Xu J, Li Q, Shang Y, et al. Regulating the photoexcited carrier transfer efficiency over graphdiyne/Ag3PO4 S-Scheme heterojunction for photocatalytic hydrogen production[J]. Journal of Environmental Chemical Engineering, 2024, 12: 114878.
|
[32] |
Zhang Y F, Liu S L, Wang J Y, et al. Based on the internal electric field S scheme mesoporous g-C3N4 nanosheets supported 2H MoS2 heterostructures for HCHO degradation of interior decoration and organic dyes degradation[J]. Inorganic Chemistry Communications, 2024, 169: 113047.
|