日用化学工业 ›› 2022, Vol. 52 ›› Issue (6): 664-671.doi: 10.3969/j.issn.1001-1803.2022.06.013
收稿日期:
2021-08-19
修回日期:
2022-05-31
出版日期:
2022-06-22
发布日期:
2022-06-22
通讯作者:
高晓星,牛宇岚
基金资助:
Wang Xiaoyu1,Gao Xiaoxing2,*(),Wang Ruiyi3,Niu Yulan1,*(
)
Received:
2021-08-19
Revised:
2022-05-31
Online:
2022-06-22
Published:
2022-06-22
Contact:
Xiaoxing Gao,Yulan Niu
摘要:
醛类化合物与酯类化合物由于普遍具有杀菌、防腐以及持久香气的特点,广泛被用作日用化学品当中的添加剂使用。而醛类与酯类化合物通过醇的选择性氧化可实现低毒、绿色、无污染的合成路径。其中LSPR金属基催化剂作为醇氧化反应的优良催化剂被广泛使用。本文对LSPR金属催化醇氧化制备醛类与酯类化合物的催化机理及其催化反应的发展趋势以及在日化领域的应用进行综述,其中以Au,Ag,Cu 3种LSPR金属作活性中心,对于醇的氧化反应具有较高的催化活性,且所制备的产物醛与酯均具备选择性高的特点,使其更加有利于二者在日用化学品当中的应用。此外,从此3种金属的LSPR效应出发,对LSPR金属在光照条件下的催化机理以及光催化醇选择性氧化反应的应用进展进行综述,基于LSPR金属表面在光照下可以产生大量热电子的理论,其在醇氧化制备醛与酯的反应中,不仅可以使反应在更加温和的条件下进行,产物的选择性还可得到进一步提升。
中图分类号:
王晓宇,高晓星,王瑞义,牛宇岚. LSPR金属催化醇氧化制备醛类与酯类化合物的研究进展及其在日化领域的应用[J]. 日用化学工业, 2022, 52(6): 664-671.
Wang Xiaoyu,Gao Xiaoxing,Wang Ruiyi,Niu Yulan. Advances of LSPR metal-catalyzed oxidation of alcohols to aldehydes and esters and their application in daily chemical field[J]. China Surfactant Detergent & Cosmetics, 2022, 52(6): 664-671.
表 1
Au基催化剂催化苯甲醇氧化制备苯甲醛"
催化剂 | 温度/K | 溶剂 | 碱量 | 转化频率(TOF)/s-1 | 参考文献 |
---|---|---|---|---|---|
Au/HT | 393 | 甲苯 | / | 0.22 | |
Au/共聚物 | 308 | 水+氯仿 | n (KOH) ∶n (醇)=1∶1 | 0.04 | |
Au(金箔) | 333 | 水 | 0.6 mol/L NaOH | 2.8 | |
Au(金箔) | 363 | 甲苯 | n (K2CO3) ∶n (醇)=1∶1 | 2.8 | |
Au(金箔) | 363 | 庚烷 | n (K2CO3) ∶n (醇)=1∶1 | 4.4 | |
Au(金箔) | 333 | 庚烷 | n (K2CO3) ∶n (醇)=1∶1 | 2.8 | |
Au(金箔) | 383 | 庚烷 | n (K2CO3) ∶n (醇)=1∶1 | 5.7 |
[1] | Ruan Haiyan. Application of cinnamaldehyde in essence and flavor daily chemical and food additive industries[J]. Fine and Specialty Chemicals, 2005, 13 (3/4) : 9-10. |
[2] | Song Kangkang, Chen Qingxi, et al. Study of whitening effect of 2-hydroxy-4-methoxy-benzaldehyde used as cosmetic additive[J]. China Surfactant Detergent & Cosmetics, 2004, 34 (1) : 65-68. |
[3] | Geng E. Synthesis and performance of high polymerized polyglycerol fatty acid ester[D]. Taiyuan: China Research Institute of Daily Chemical Industry, 2014. |
[4] | Xing Haiyan, Sun Li, Wu Xu, et al. Simultaneous determination of nine kinds of 4-hydroxybenzoate preservatives in cosmetics by high performance liquid chromatography[J]. Chemical Analysis and Meterage, 2021, 30 (5) : 46-50. |
[5] |
Yamaguchi K, Mizuno N. Supported ruthenium catalyst for the heterogeneous oxidation of alcohols with molecular axygen[J]. Angew. Chem. Int. Ed. 2002, 41 (23) : 4538-4542.
doi: 10.1002/1521-3773(20021202)41:23<4538::AID-ANIE4538>3.0.CO;2-6 |
[6] |
Mori K, Hara T, Mizugaki T, et al. Hydroxyapatite-supported palladium nanoclusters: A highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen[J]. J. Am. Chem. Soc., 2004, 126 (34) : 10657-10666.
doi: 10.1021/ja0488683 |
[7] |
Yang Xiaoming, Wang Xiuna, Qui Jieshan. Aerobic oxidation of alcohols over carbon nanotube-supported Ru catalysts assembled at the interfaces of emulsion droplets[J]. Appl. Catal. A., 2010, 382 (1) : 131-137.
doi: 10.1016/j.apcata.2010.04.046 |
[8] |
Fristrup P, Johansen L B, Christensen C H. Mechanistic investigation of the gold-catalyzed aerobic oxidation of alcohols[J]. Catal. Lett., 2008, 120 (3-4) : 184-190.
doi: 10.1007/s10562-007-9301-8 |
[9] |
Fang Wenhao, Chen Jiashu, Zhang Qinghong, et al. Hydrotalcite-supported gold catalyst for the oxidant-free dehydrogenation of benzyl alcohol: studies on support and gold size effects[J]. Chem. Eur. J., 2011, 17 (4) : 1247-1256.
doi: 10.1002/chem.201002469 |
[10] | Sharpless K B, Akashi K, Oshima K. Ruthenium catalyzed oxidation of alcohols to aldehydes and ketones by amine-n-oxides[J]. Cheminform, 1976, 17 (29) : 2503-2506. |
[11] |
Yamaguchi K, Mori K, Mizugaki T, et al. Creation of a monomeric Ru species on the surface of hydroxyapatite as an efficient heterogeneous catalyst for aerobic alcohol oxidation[J]. J. Am. Chem. Soc., 2000, 122 (29) : 7144-7145.
doi: 10.1021/ja001325i |
[12] |
Buonerba A, Cuomo C, Dr. Sheila O, et al. Gold nanoparticles incarcerated in nanoporous syndiotactic polystyrene matrices as new and efficient catalysts for alcohol oxidations[J]. Chem. Eur. J., 2012, 18 (2) : 709-715.
doi: 10.1002/chem.201101034 |
[13] | An G, Ahn H, Kathlia A, et al. Pd/C and NaBH4 in basic aqueous alcohol: an efficient system for an environmentally benign oxidation of alcohols[J]. Synthesis, 2010, 3, 477-485. |
[14] |
Guo Hongfan, Afnan A, Marianna K, et al. Gold catalysis outside nanoscale: bulk gold catalyzes the aerobic oxidation of π-activated alcohols[J]. ChemCatChem, 2011, 3 (12) : 1872-1875.
doi: 10.1002/cctc.201100286 |
[15] |
Villa A, Carine E, Thaw C, et al. Au on nanosized NiO: A cooperative effect between au and nanosized NiO in the base-free alcohol oxidation[J]. ChemCatChem, 2011, 3 (10) : 1612-1618.
doi: 10.1002/cctc.201100161 |
[16] |
Uozumi Y, Nakao R. Catalytic oxidation of alcohols in water under atmospheric oxygen by use of an amphiphilic resin-dispersion of a nanopalladium catalyst[J]. Angew. Chem. Int. Ed., 2003, 42 (2) : 194-197.
doi: 10.1002/anie.200390076 |
[17] |
Taarning E, Inger S N, Egeblad K, et al. Chemicals from renewables: aerobic oxidation of furfural and hydroxymethylfurfural over gold catalysts[J]. ChemSusChem, 2008, 1 (1-2) : 75-78.
doi: 10.1002/cssc.200700033 pmid: 18605666 |
[18] |
Gorbanev Y Y, Klitgaard S K, Woodley J M, et al. Gold-catalyzed aerobic oxidation of 5-hydroxymethylfurfural in water at ambient temperature[J]. ChemSusChem, 2009, 2 (7) : 672-675.
doi: 10.1002/cssc.200900059 pmid: 19593753 |
[19] |
Rodrigues E G, Pereira M F R, Chen Xiaowei, et al. Influence of activated carbon surface chemistry on the activity of Au/AC catalysts in glycerol oxidation[J]. J. Catal., 2011, 281 (1) : 119-127.
doi: 10.1016/j.jcat.2011.04.008 |
[20] |
Beier M J, Hansenb T W, Grunwaldt J D, et al. Selective liquid-phase oxidation of alcohols catalyzed by a silver-based catalyst promoted by the presence of ceria[J]. J. Catal., 2009, 266 (2) : 320-330.
doi: 10.1016/j.jcat.2009.06.022 |
[21] |
Mitsudome T, Mikami Y, Funai H, et al. Oxidant-free alcohol dehydrogenation using a reusable hydrotalcite-supported silver nanoparticle catalyst[J]. Angew. Chem. Int. Ed., 2007, 47 (1) : 138-141.
doi: 10.1002/anie.200703161 |
[22] |
Liotta L F, Venezia A M, Deganello G, et al. Liquid phase selective oxidation of benzyl alcohol over Pd-Ag catalysts supported on pumice[J]. Catal. Today, 2001, 66 (2-4) : 271-276.
doi: 10.1016/S0920-5861(00)00650-7 |
[23] |
Prati L, Spontoni P, Gaiassi A. From renewable to fine chemicals through selective oxidation: the case of glycerol[J]. Top. Catal., 2009, 52 (3) : 288-296.
doi: 10.1007/s11244-008-9165-1 |
[24] |
Hirasawa S, Nakagawa Y, Tomishige K. Selective oxidation of glycerol to dihydroxyacetone over a Pd-Ag catalyst[J]. Catal. Sci. Technol., 2012, 2 (6) : 1150-1152.
doi: 10.1039/c2cy20062g |
[25] |
Kamat P V. Photochemical and photocatalytic aspects of metal nanoparticles[J]. J. Phys. Chem. B, 2002, 106 (32) : 7729-7744.
doi: 10.1021/jp0209289 |
[26] |
Watanabe K, Menzel D, Nilius N, et al. Photochemistry of metal nanoparticles[J]. Chem. Rev., 2006, 106 (10) : 4301-4320.
pmid: 17031988 |
[27] | Ratner M, Ratner D. Nanotechnology: a gentle introduction to the next big idea[M]. New Jersey: Prentice Hall, 2003. |
[28] |
Link S, Mostafa A. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals[J]. Int. Rev. Phys. Chem., 2000, 19 (3) : 409.
doi: 10.1080/01442350050034180 |
[29] |
Cottancin E, Celep G, Lermé J, et al. Optical properties of noble metal clusters as a function of the size: comparison between experiments and a semi-quantal theory[J]. Theor. Chem. Acc., 2006, 116: 514-523.
doi: 10.1007/s00214-006-0089-1 |
[30] |
Navalon S, Miguel M, Martin R, et al. Enhancement of the catalytic activity of supported gold nanoparticles for the Fenton reaction by light[J]. J. Am. Chem. Soc., 2011, 133 (7) : 2218-2226.
doi: 10.1021/ja108816p pmid: 21280633 |
[31] |
Christopher P, Hong Liangxin, Linic S. Visible light enhanced catalytic oxidation reactions on plasmonic Ag nanostructures[J]. Nature Chem., 2011, 3, 467-472.
doi: 10.1038/nchem.1032 |
[32] |
Zhu Huaiyong, Ke Xuebin, Yang Xuzhuang, et al. Reduction of Nitroaromatic compounds on supported gold nanoparticles by visible and ultraviolet light[J]. Angew. Chemie. Int. Ed., 2010, 122 (50) : 9851-9855.
doi: 10.1002/ange.201003908 |
[33] |
Sugano Y, Shiraishi Y, Tsukamoto D, et al. Supported Au-Cu bimetallic alloy nanoparticles: an aerobic oxidation catalyst with regenerable activity by visible-light irradiation[J]. Angew. Chemie., 2013, 52 (20) : 5295-5299.
doi: 10.1002/anie.201301669 |
[34] |
Zhang Xingguang, Ke Xuebin, Zhu Huaiyong. Zeolite-supported gold nanoparticles for selective photooxidation of aromatic alcohols under visible-light irradiation[J]. Chem. Eur. J., 2012, 18 (26) : 8048-8056.
doi: 10.1002/chem.201200368 |
[35] |
Maldotti A, Molinari A, Juárez R, et al. Photoinduced reactivity of Au-H intermediates in alcohol oxidation by gold nanoparticles supported on ceria[J]. Chem. Sci., 2011, 2 (5) : 1831-1834.
doi: 10.1039/c1sc00283j |
[36] |
Wu G W, Brett G L, Enhong C, et al. Oxidation of cinnamyl alcohol using bimetallic Au-Pd/TiO2 catalysts: a deactivation study in a continuous flow packed bed microreactor[J]. Catal. Sci. Technol., 2016, 6: 4749-4758.
doi: 10.1039/C6CY00232C |
[37] | Xu Kangbao, Shi Rongying, Xu Qiumei. The application status and development of bactericide in liquid laundry detergent[J]. China Cleaning Industry, 2017, 8: 70-76. |
[38] | Jiang Qin. Study on green catalytic process for oxidation of benzyl alcohol to benzaldehyde[D]. Hangzhou: Zhejiang University, 2018. |
[39] | Wang Songqing. Synthetic methods and application of glutaraldehyde[J]. Tianjin Chemical Industry, 2005, 19: 36-38. |
[40] | Zhao Dongbo. Application of continuous microreaction technology in the synthesis of flavour fragrance and cosmetics[J]. Flavour Fragrance Cosmetics, 2010, 6: 42-48. |
[41] | Yang Kunyu, Jiang Wenwei, Chu Yuyu. Study on the surface properties of the polyglycerol fatty acid esters[J]. Detergent & Cosmetics, 2010, 33 (5) : 25-28. |
[42] | Li Weizhang. The production, performance and application of polyglycerol and polyglycerol esters[J]. Detergent & Cosmetics, 1999 (6) : 6-8. |
[43] |
Song Yujie, Wang Hao, Liu Guangsheng, et al. Constructing surface synergistic effect in Cu-Cu2O hybrids and monolayer H1.4Ti1.65O4·H2O nanosheets for selective cinnamyl alcohol oxidation to cinnamaldehyde[J]. J. Catal., 2019, 370: 461-469.
doi: 10.1016/j.jcat.2019.01.016 |
[44] | Li Jinglin, Li Bing, Liang Yuning, et al. Study on catalytic oxidation of isopentyl alcohol to isopenty aldehyde on Ag/KZSM-5 zeolite[J]. Guangxi Chemical Industry, 1998, 27: 6-9. |
[45] | Yang Shuijin, Liang Yongguang, Sun Jutang. Synthesis of P-Hydroxybenzoate esters with TiSiW12O40/TiO2[J]. Rare Metal Materials and Engineering, 2003, 32: 1033-1036. |
[46] | Yang Shuijin, Yu Xieqing, Liang Yongguang, et al. Synthesis of ethyl acetoacetate ethylene ketal catalyzed by using TiSiW12O40/TiO2[J]. Journal of Molecular Catalysis (China), 2003, 17: 61-64. |
[47] | Yin Jinfei. Oxidation of ethylene glycol to 40% glyoxal over Ag catalyst[J]. Shanghai Chemical Industry, 2006, 31: 13-15. |
[48] | Li Xue. Applications of esters in fine chemicals[J]. Journal of Zhenjiang College, 1997, 2: 68-70. |
[49] | Yu Xue, Chen Jie, Zhang Hongqing, et al. Study on Cu/ZrO2 catalysts modified by alkali metal and alkaline earth metal for ethanol one-step synthesis ethyl acetate[J]. Applied Chemical Industry, 2016, 45: 1938-1941. |
[1] | 汤艳娜, 陈子珍. BaTiO3-TiO2复合光催化剂降解盐酸四环素及机理研究[J]. 日用化学工业(中英文), 2024, 54(2): 175-180. |
[2] | 常香玲, 柴菲. 氧化锌纳米复合抗菌材料的制备及性能研究[J]. 日用化学工业(中英文), 2023, 53(9): 1051-1056. |
[3] | 章贞阳, 何云阳. ZnO纳米颗粒的合成及盐酸四环素降解活性研究[J]. 日用化学工业(中英文), 2023, 53(7): 781-788. |
[4] | 刘慧婷, 杜隆达, 覃礼堂. SrWO4光催化剂的制备及其光催化降解盐酸金霉素的研究[J]. 日用化学工业(中英文), 2023, 53(12): 1377-1384. |
[5] | 郭晓萍,张昊,高娜,张瑞琴,梁栋,张巧玲. 不同烷基链长Janus g-C3N4的乳化性能及光催化应用[J]. 日用化学工业, 2021, 51(5): 402-407. |
[6] | 尹言吉,台秀梅,杜志平. 碳量子点改性纳米二氧化钛的制备及其光催化降解壬基酚聚氧乙烯醚的性能研究[J]. 日用化学工业, 2019, 49(11): 733-736. |
[7] | 蔡霞,黄艳婷,符美燕,蒙晓,梁祈. HPLC法测定化妆品中12种邻苯二甲酸酯类化合物[J]. 日用化学工业, 2018, 48(7): 415-418. |
[8] | 王明华, 蔡红兰, 乔青安, 任淑华, 朱冬冬, 薛众鑫. 微乳法制备棒状ZnO材料及其光催化性能[J]. 日用化学工业, 2018, 48(2): 61-66. |
[9] | 宋俊达, 陈洪龄. ZnO溶胶的制备及其抑菌性和光催化性能研究[J]. 日用化学工业, 2017, 47(8): 452-457. |
[10] | 孙晶晶, 宋伟明, 孙立, 马帅, 刘鹏, 王斐. Fe3O4-ZnO复合材料的可控制备及其性能研究[J]. 日用化学工业, 2015, 45(1): 32-35. |
[11] | 于建, 许勇, 郑荣, 刘畅, 王柯. 超高效液相色谱-串联质谱法测定化妆品中23种邻苯二甲酸酯类化合物[J]. 日用化学工业, 2014, 44(9): 529-533. |
[12] | 白亚敏, 杨小珊, 毛庆, 江生, 秦剑. 液相色谱-质谱法测定化妆品中10种邻苯二甲酸酯[J]. 日用化学工业, 2014, 44(8): 472-475. |
|