[1] |
Zhang P, Sun Y, Wang X, et al. Selective decontamination of textile thiazine dyes by sulfite promotion: Reaction kinetics and activation mechanism[J]. Separation and Purification Technology, 2024, 346: 127552.
|
[2] |
Mao J E, Chen H Y, Xu X Y, et al. Assessing greenhouse gas emissions from the printing and dyeing wastewater treatment and reuse system: Potential pathways towards carbon neutrality[J]. The Science of the Total Environment, 2024, 927: 172301.
|
[3] |
Li Y X, Han Z Q, Wang D L, et al. Preparation of hexagonal boron nitride nanosheets in low eutectic solvent and its application for dye adsorption[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 700: 134813.
|
[4] |
Talip A A R, Yahya N Z W, Mohamed M N, et al. A performance enhancement of dye-sensitized solar cells using pyrazolium-based ionic liquids electrolytes vs imidazolium-based ionic liquids electrolytes[J]. Journal of Molecular Liquids, 2024, 398: 124214.
|
[5] |
刘慧婷, 杜隆达, 覃礼堂. SrWO4光催化剂的制备及其光催化降解盐酸金霉素的研究[J]. 日用化学工业(中英文), 2023, 53 (12) : 1377-1384.
|
[6] |
Pawan K, Ehsan V, Ujwal K T, et al. C3N5: a low bandgap semiconductor containing an Azo-linked carbon nitride framework for photocatalytic, photovoltaic and adsorbent applications[J]. Journal of the American Chemical Society, 2019, 141: 5415-5436.
doi: 10.1021/jacs.9b00144
pmid: 30762369
|
[7] |
Liu S L, Bu Y F, Cheng S, et al. Preparation of g-C3N5/g-C3N4 heterojunction for methyl orange photocatalytic degradation: Mechanism analysis[J]. Journal of Water Process Engineering, 2023, 54: 104019.
|
[8] |
Li Q, Song S Z, Mu Z Y, et al. Hollow carbon nanospheres@graphitic C3N5 heterostructures for enhanced oxygen electroreduction[J]. Applied Surface Science, 2022, 579: 152006.
|
[9] |
Vadivel S, Fujii M, Rajendran S. Novel S-scheme 2D/2D Bi4O5Br2 nanoplatelets/g-C3N5 heterojunctions with enhanced photocatalytic activity towards organic pollutants removal[J]. Environmental Research, 2022, 213: 113736.
|
[10] |
Tharuman S, Balakumar V, Vinodhini J, et al. Visible light driven photocatalytic performance of 3D TiO2/g-C3N5 nanocomposite via Z-scheme charge transfer promotion for water purification[J]. Journal of Molecular Liquids, 2023, 371: 121101.
|
[11] |
Liao W N, Yang Z Q, Wang Y, et al. Novel Z-scheme Nb2O5/C3N5 photocatalyst for boosted degradation of tetracycline antibiotics by visible light-assisted activation of persulfate system[J]. Chemical Engineering Journal, 2023, 478: 147346.
|
[12] |
Zhang Y, Cui T Y, Zhao J B, et al. Fabrication and study of a novel TiO2/g-C3N5 material and photocatalytic properties using methylene blue and tetracycline under visible light[J]. Inorganic Chemistry Communications, 2022, 143: 109815.
|
[13] |
Hazarika B, Bhattacharjee B, Ahmaruzzaman M. Enhanced photocatalytic degradation of brilliant green using g-C3N5/WO3 nanocomposite: A Z-scheme charge transfer approach under visible light irradiation[J]. Inorganic Chemistry Communications, 2024, 168: 112960.
|
[14] |
Wu L Z, Yang X Y, Chen T, et al. Three-dimensional C3N5/RGO aerogels with enhanced visible-light response and electron-hole separation efficiency for photocatalytic uranium reduction[J]. Chemical Engineering Journal, 2022, 427: 131733.
|
[15] |
曹俊雅, 雷兴雨, 刘猛, 等. TiO2/活性炭光催化剂降解乙黄药的综合实验设计[J]. 实验技术与管理, 2023, 40 (9) : 23-28.
|
[16] |
张诗苑, 闫宇星, 齐有, 等. 木屑基介孔活性炭的制备及其对刚果红的高效吸附[J]. 应用化工, 2024, 53 (5) : 1113-1118.
|
[17] |
祁传磊, 李圣平, 曹玉亭, 等. 沥青基活性炭-MnO复合材料的可控制备及其在非对称超级电容器中的应用[J]. 化学反应工程与工艺, 2024, 40 (1) : 19-27, 34.
|
[18] |
刘洋, 郭少青, 孙万兴, 等. 重质沥青基活性炭的制备研究[J]. 现代化工, 2022, 42 (8) : 146-150.
doi: 10.16606/j.cnki.issn0253-4320.2022.08.029
|
[19] |
包诗源, 张啸宇, 吴科融, 等. 煤液化沥青基活性炭的制备及其对间二甲苯吸附性能的研究[J]. 炭素技术, 2024, 43 (1) : 30-35, 41.
|
[20] |
卜义夫, 刘思乐, 宋丹丹, 等. 废旧涤纶基活性炭负载g-C3N4光催化剂的制备及其对亚甲基蓝的光催化降解[J]. 毛纺科技, 2023, 51 (2) : 40-48.
|
[21] |
Huang G Z, Liu S L, Tian C, et al. Construction of S scheme ZnO/g-C3N4 heterojunction for the removal of pyridine from coal chemical wastewater[J]. Optical Materials, 2024, 150: 115288.
|
[22] |
汪磊, 田君. C-O官能团修饰的CaMoO4光催化剂的合成与光催化活性研究[J]. 日用化学工业(中英文), 2024, 54 (6) : 669-676.
|
[23] |
陈建军, 周诗园, 黄雨晨, 等. 无定型碳/g-C3N4制备及其光催化降解四环素性能[J]. 化学试剂, 2023, 45 (7) : 107-112.
|
[24] |
苏荣军, 姜灏, 魏澜, 等. g-C3N4基光催化剂的改性制备及在废水处理中的应用[J]. 中国给水排水, 2023, 39 (10) : 55-61.
|
[25] |
Zhang Y F, Liu S L, Wang J Y, et al. Based on the internal electric field S scheme mesoporous g-C3N4 nanosheets supported 2H MoS2 heterostructures for HCHO degradation of interior decoration and organic dyes degradation[J]. Inorganic Chemistry Communications, 2024, 169: 113047.
|
[26] |
Deng Y C, Li L, Zeng H, et al. Unveiling the origin of high-efficiency charge transport effect of C3N5/C3N4 homojunction for activating peroxymonosulfate to degrade atrazine under visible light[J]. Chemical Engineering Journal, 2023, 457: 141261.
|
[27] |
陈彰旭, 朱丹琛, 傅明连. g-C3N4/TiO2复合材料制备及其处理罗丹明B研究[J]. 无机盐工业, 2023, 55 (7) : 130-136.
|
[28] |
Hulugirgesh D W, Tesfa M, Neway B, et al. Enhanced photocatalytic degradation of methylene blue dye using fascily synthesized g-C3N4/CoFe2O4 composite under sun light irradiation[J]. Results in Chemistry, 2024, 7: 101306.
|
[29] |
Zeng Y X, Liu X, Liu C B, et al. Scalable one-step production of porous oxygen-doped g-C3N4 nanorods with effective electron separation for excellent visible-light photocatalytic activity[J]. Applied Catalysis B: Environmental, 2018, 224: 1-9.
|
[30] |
Chen X X, Yu F Q, Gong F Z, et al. Preparation of 3D porous CeO2/g-C3N4 photocatalyst via facile one-step calcination for rapid removing of tetracycline[J]. Vacuum, 2023, 213: 112090.
|
[31] |
Long J Q, Wei L, Huang H Z, et al. Facile fabrication of biochar-coupled g-C3N5/C and its enhanced photocatalytic properties[J]. Journal of Physics and Chemistry of Solids, 2022, 171: 111029.
|
[32] |
Zhao S Z, Shi R D, Xu J L, et al. Hollow g-C3N4/TiO2 tubes based on waste foam for efficient organics removal and electricity generation in photocatalytic fuel cell[J]. Ceramics International, 2024, 50: 36252-36260.
|
[33] |
唐贝. ZnO/g-C3N4异质结光催化材料的制备及对吡啶的降解[J]. 无机盐工业, 2024, 56 (4) : 133-142.
|