日用化学工业(中英文) ›› 2024, Vol. 54 ›› Issue (7): 767-776.doi: 10.3969/j.issn.2097-2806.2024.07.003
周业杰1,刘雅迪1,赵以墨1,孙晓彤1,高宇1,范金石1,2,*()
收稿日期:
2024-05-31
出版日期:
2024-07-22
发布日期:
2024-07-26
基金资助:
Yejie Zhou1,Yadi Liu1,Yimo Zhao1,Xiaotong Sun1,Yu Gao1,Jinshi Fan1,2,*()
Received:
2024-05-31
Online:
2024-07-22
Published:
2024-07-26
Contact:
*E-mail: chemfan@qust.edu.cn.
摘要:
黄芪胶是从天然草本植物黄芪中提取的一种多糖类物质,因具有化学稳定性、非致畸性、非免疫原性、生物可降解性、生物相容性和天然无毒等特性,且利用其分子结构中的羟基、羧基、糖苷键等活性官能基团进行分子修饰、化学交联、接枝共聚等改性处理能明显改善其理化性质、增强其功能效用,使得黄芪胶及其改性产物在医药领域、食品加工、水处理、医用材料、日用化学品领域得到广泛应用。本文浅述了黄芪胶的来源、组成和结构,主要理化性质和功能作用,以及提取纯化技术和应用进展情况,并提及了黄芪胶及其改产物当前研究开发所面临的问题和发展趋势。
中图分类号:
周业杰, 刘雅迪, 赵以墨, 孙晓彤, 高宇, 范金石. 天然生物质材料的制备、性质与应用(Ⅶ)——支链异构阴离子多糖胶:黄芪胶[J]. 日用化学工业(中英文), 2024, 54(7): 767-776.
Yejie Zhou, Yadi Liu, Yimo Zhao, Xiaotong Sun, Yu Gao, Jinshi Fan. Preparation, properties and applications of natural biomass materials (Ⅶ)Branched heteroglycan anionic polysaccharides: gum tragacanth[J]. China Surfactant Detergent & Cosmetics, 2024, 54(7): 767-776.
[1] |
Shahrajabian M H, Sun W, Cheng Q. A review of astragalus species as foodstuffs, dietary supplements, a traditional Chinese medicine and a part of modern pharmaceutical science[J]. Applied Ecology and Environmental Research, 2019, 17 (6) : 13371-13382.
doi: 10.15666/aeer/1706_1337113382 |
[2] | Nazemi Z, Sahraro M, Janmohammadi M, et al. A review on tragacanth gum: a promising natural polysaccharide in drug delivery and cell therapy[J]. International Journal of Biological Macromolecules, 2023, 241: 18. |
[3] | Amos Nussinovitch. Plant gum exudates of the world: sources, distribution, properties, and applications[M]. CRC Press, 2009. |
[4] | Balaghi S, Mohammadifar M A, Zargaraan A. Physicochemical and rheological characterization of gum tragacanth exudates from six species of iranian astragalus[J]. Food Biophysics, 2010, 5 (1) : 59-71. |
[5] | Kora A J. Plant arabinogalactan gum synthesized palladium nanoparticles: characterization and properties[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29 (6) : 2054-2063. |
[6] | Kora A J. Exudate tree gums: properties and applications[M]. Scrivener Publishing, 2021. |
[7] | Kora A J. Gum tragacanth-mediated synthesis of metal nanoparticles, characterization, and their applications as a bactericide, catalyst, antioxidant, and peroxidase mimic[J]. Green Processing and Synthesis, 2023, 12 (1) : 14. |
[8] | Yazdi M E T, Nazarnezhad S, Mousavi S H, et al. Gum tragacanth (GT) : a versatile biocompatible material beyond borders[J]. Molecules, 2021, 26 (6) : 18. |
[9] |
Nejatian M, Abbasi S, Azarikia F. Gum tragacanth: structure, characteristics and applications in foods[J]. International Journal of Biological Macromolecules, 2020, 160: 846-860.
doi: S0141-8130(20)33372-9 pmid: 32474076 |
[10] | Hesaraki S, Nouri-Felekori M, Nezafati N, et al. Preparation, characterization, and in vitro biological performance of novel porous GPTMS-coupled tragacanth/nano-bioactive glass bone tissue scaffolds[J]. Materials Today Communications, 2021, 27: 14. |
[11] | Azarikia F, Abbasi S. Mechanism of soluble complex formation of milk proteins with native gums (tragacanth and Persian gum)[J]. Food Hydrocolloids, 2016, 59: 35-44. |
[12] | Keivanfard N, Nasirpour A, Barekat S, et al. Effects of heat and high-pressure homogenization processes on rheological and functional properties of gum tragacanth[J]. Food Hydrocolloids, 2022, 128: 13. |
[13] | Gavlighi H A, Meyer A S, Zaidel D N A, et al. Stabilization of emulsions by gum tragacanth correlates to the galacturonic acid content and methoxylation degree of the gum[J]. Food Hydrocolloids, 2013, 31 (1) : 5-14. |
[14] | Bahraseman N M, Shekarchizadeh H, Goli S A H. Segregative phase separation of gelatin and tragacanth gum solution and mickering stabilization of their water-in-water emulsion with microgel particles prepared by complex coacervation[J]. International Journal of Biological Macromolecules, 2023, 237: 9. |
[15] |
Zare E N, Makvandi P, Tay F R. Recent progress in the industrial and biomedical applications of tragacanth gum: a review[J]. Carbohydrate Polymers, 2019, 212: 450-467.
doi: S0144-8617(19)30218-8 pmid: 30832879 |
[16] |
Behrouzi M, Moghadam P N. Synthesis of a new superabsorbent copolymer based on acrylic acid grafted onto carboxymethyl tragacanth[J]. Carbohydrate Polymers, 2018, 202: 227-235.
doi: S0144-8617(18)31002-6 pmid: 30286996 |
[17] | Nejatian M, Jonaidi-Jafari N, Abbaszadeh S, et al. Using the mixture design approach to predict the rheological properties of low-calorie dairy desserts containing gum tragacanth exuded by three Iranian Astragalus species[J]. Food Science and Biotechnology, 2019, 28 (2) : 405-412. |
[18] |
Raoufi N, Kadkhodaee R, Fang Y, et al. Ultrasonic degradation of persian gum and gum tragacanth: effect on chain conformation and molecular properties[J]. Ultrasonics Sonochemistry, 2019, 52: 311-317.
doi: S1350-4177(18)31146-5 pmid: 30563796 |
[19] |
Hosseini-Abari A, Emtiazi G, Jazini M, et al. LC/MS detection of oligogalacturonic acids obtained from tragacanth degradation by pectinase producing bacteria[J]. Journal of Basic Microbiology, 2019, 59 (3) : 249-255.
doi: 10.1002/jobm.201800332 pmid: 30548881 |
[20] | Godarzi H, Mohammadifar M A, Rad A H, et al. Physicochemical properties of oil in water emulsions prepared with irradiated gum tragacanth in acidic conditions[J]. Journal of Food Measurement and Characterization, 2021, 15 (5) : 4735-4746. |
[21] | Atalar I, Besir A, Kurt A. Agglomeration of gum tragacanth as a promising novel approach to structural modification[J]. Powder Technology, 2023, 426: 13. |
[22] | Li J Y. Study on preparation and adsorption performances of chitosan/gum tragacanth hydrogels[D]. Hohhot: Inner Mongolia Agricultural University, 2022. |
[23] | Song J J, Chen B, Zhou J, et al. Comparison in optimization of extraction technology of astragalus polysaccharide from astragalus by R language and orthogonal test[J]. Journal of Emergency in Traditional Chinese Medicine, 2019, 28 (7) : 1129-1132. |
[24] | Yang Q F, Wang F, Ye T, et al. Research progress on extraction technology, chemical structure and pharmacological action of astragalus polysaccharides[J]. Chinese Traditional and Herbal Drugs, 2023, 54 (12) : 4069-4081. |
[25] | Gong A D, Song M G, Wang G Y, et al. Review on extraction technology of polysaccharide from astragalus licentianus[J]. Journal of Xinyang Normal University(Natural Science Edition), 2022, 35 (1) : 168-172. |
[26] | Xie D D, Zheng D, Zhang L X. Studies on extraction and antioxidant activity of astragalus membranaceus alkali soluble polysaccharide[J]. Tianjin Agricultural Sciences, 2019, 25 (12) : 19-23. |
[27] | Tian L, Xuan Y F, Fan R J, et al. Ethanol-alkali extraction method of astragalus polysaccharides[J]. Journal of Jilin University(Science Edition), 2006, 44 (4) : 652-657. |
[28] |
Chen H G, Zhou X, Zhang J Z. Optimization of enzyme assisted extraction of polysaccharides from Astragalus membranaceus[J]. Carbohydrate Polymers, 2014, 111: 567-575.
doi: 10.1016/j.carbpol.2014.05.033 pmid: 25037388 |
[29] | Song Q Y, Yang X, Zhang L, et al. Optimization of ultrasonic extraction technology of astragalus polysaccharide by response surface methodology[J]. Journal of Liaoning University of Traditional Chinese Medicine, 2018, 20 (2) : 44-47. |
[30] |
Chen H, Zheng W H, Yang S L. Optimization of fermentation conditions for increasing astragalus polysaccharide contents by biotransformation[J]. China Brewing, 2017, 36 (12) : 130-133.
doi: 10.11882/j.issn.0254-5071.2017.12.027 |
[31] | Miao J. Separation and purification of astragalus polysaccharide and development of astragalus polysaccharide compound beverage[D]. Hohhot: Inner Mongolia Agricultural University, 2023. |
[32] | Emadzadeh B, Naji-Tabasi S, Bostan A, et al. An insight into Iranian natural hydrocolloids: applications and challenges in health-promoting foods[J]. Food Hydrocolloids, 2023, 141: 18. |
[33] | Ghaderi-Ghahfarokhi M, Yousefvand A, Gavlighi H A, et al. Developing novel synbiotic low-fat yogurt with fucoxylogalacturonan from tragacanth gum: investigation of quality parameters and Lactobacillus casei survival[J]. Food Science & Nutrition, 2020, 8 (8) : 4491-4504. |
[34] | Yu D, Kwon G, An J, et al. Influence of prebiotic biopolymers on physicochemical and sensory characteristics of yoghurt[J]. International Dairy Journal, 2021, 115: 10. |
[35] | Janowicz M, Rybak K, Ciurzynska A, et al. Effect of interactions of locust bean gum and rosehip juice on the physical properties of gum tragacanth composite films[J]. Journal of Food Processing and Preservation, 2022, 46 (11) : 16. |
[36] | Mu R J, Bu N T, Yuan Y, et al. Development of chitosan/konjac glucomannan/tragacanth gum tri-layer food packaging films incorporated with tannic acid and ε-polylysine based on mussel-inspired strategy[J]. International Journal of Biological Macromolecules, 2023, 242: 14. |
[37] | Khodaei D, Oltrogge K, Hamidi-Esfahani Z. Preparation and characterization of blended edible films manufactured using gelatin, tragacanth gum and, persian gum[J]. Lwt-Food Science and Technology, 2020, 117: 9. |
[38] |
Ali S, Anjum M A, Nawaz A, et al. Tragacanth gum coating modulates oxidative stress and maintains quality of harvested apricot fruits[J]. International Journal of Biological Macromolecules, 2020, 163: 2439-2447.
doi: 10.1016/j.ijbiomac.2020.09.179 pmid: 32979449 |
[39] | Thamer B M, Al-aizari F A, Abdo H S. Activated carbon-incorporated tragacanth gum hydrogel biocomposite: a promising adsorbent for crystal violet dye removal from aqueous solutions[J]. Gels, 2023, 9 (12) : 18. |
[40] | Moghaddam A Z, Jazi M E, Allahrasani A, et al. Removal of acid dyes from aqueous solutions using a new eco-friendly nanocomposite of CoFe2O4 modified with tragacanth gum[J]. Journal of Appplied Polymer Science, 2020, 137 (17) : 12. |
[41] |
Sheorain J, Mehra M, Thakur R, et al. In vitro anti-inflammatory and antioxidant potential of thymol loaded bipolymeric (tragacanth gum/chitosan) nanocarrier[J]. International Journal of Biological Macromolecules, 2019, 125: 1069-1074.
doi: S0141-8130(18)35723-4 pmid: 30552929 |
[42] | Abdoli M, Sadrjavadi K, Arkan E, et al. Polyvinyl alcohol/gum tragacanth/graphene oxide composite nanofiber for antibiotic delivery[J]. Journal of Drug Delivery Science and Technology, 2020, 60: 7. |
[43] | Potas J, Szymanska E, Basa A, et al. Tragacanth gum/chitosan polyelectrolyte complexes-based hydrogels enriched with xanthan gum as promising materials for buccal application[J]. Materials, 2021, 14 (1) : 15. |
[44] | Shirazi N M, Eslahi N, Gholipour-Kanani A. Production and characterization of keratin/tragacanth gum nanohydrogels for drug delivery in medical textiles[J]. Frontiers in Materials, 2021, 8: 12. |
[45] | Priya S, Choudhari M, Tomar Y, et al. Exploring polysaccharide-based bio-adhesive topical film as a potential platform for wound dressing application: a review[J]. Carbohydrate Polymers, 2024, 327: 24. |
[46] | Ranjbar-Mohammadi M, Rabbani S, Bahrami S H, et al. Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly(ε-caprolactone) electrospun nanofibers[J]. Materials Science & Engineering C-Materials for Biological Applications, 2016, 69: 1183-1191. |
[47] |
Ghayempour S, Montazer M, Rad M M. Encapsulation of aloe vera extract into natural tragacanth gum as a novel green wound healing product[J]. International Journal of Biological Macromolecules, 2016, 93: 344-349.
doi: S0141-8130(16)30901-1 pmid: 27590536 |
[48] | Dixit K, Kulanthaivel S, Agarwal T, et al. Gum tragacanth modified nano-hydroxyapatite: an angiogenic-osteogenic biomaterial for bone tissue engineering[J]. Ceramics International, 2022, 48 (10) : 14672-14683. |
[49] |
Kulanthaivel S, Agarwal T, Rathnam V S S, et al. Cobalt doped nano-hydroxyapatite incorporated gum tragacanth-alginate beads as angiogenic-osteogenic cell encapsulation system for mesenchymal stem cell based bone tissue engineering[J]. International Journal of Biological Macromolecules, 2021, 179: 101-115.
doi: 10.1016/j.ijbiomac.2021.02.136 pmid: 33621571 |
[50] | Janmohammadi M, Nourbakhsh M S, Bahraminasab M, et al. Enhancing bone tissue engineering with 3D-printed polycaprolactone scaffolds integrated with tragacanth gum/bioactive glass[J]. Materials Today Bio., 2023, 23: 15. |
[1] | 江月明,鲁文嘉,瞿欣. 檀香木提取物对皮肤嗅觉受体的影响及功效[J]. 日用化学工业(中英文), 2024, 54(7): 828-835. |
[2] | 郎钰, 耿涛, 周婧洁, 孙晋源, 梁慧斌, 王春雨. 脂肪胺窄分布乙氧基化物的合成及其性能研究[J]. 日用化学工业(中英文), 2024, 54(6): 640-647. |
[3] | 刘庆刚, 严羽欢, 潘鹤潮, 陈雪. 具有表面活性的聚合物在洗涤剂中的应用研究[J]. 日用化学工业(中英文), 2024, 54(5): 527-534. |
[4] | 杨许召, 袁康康, 吴龙焕, 牛彩奇, 张盈盈, 李亚坤, 王军. 表面活性剂在MOFs材料制备中的应用[J]. 日用化学工业(中英文), 2024, 54(5): 581-587. |
[5] | 邓诗雨, 孙旭, 金建明, 吴华. 化妆品植物原料(Ⅷ)——抗细菌的植物原料研究与开发[J]. 日用化学工业(中英文), 2024, 54(4): 385-392. |
[6] | 王艾德, 崔金德, 梁丽丽, 张琳涵, 曹允灿, 刘庆润. 氨基改性硅油柔软剂的稀释稳定性研究[J]. 日用化学工业(中英文), 2024, 54(4): 425-430. |
[7] | 柳婧璇, 金建明, 吴华. 化妆品植物原料(Ⅶ)——抗真菌的植物原料的研究与开发[J]. 日用化学工业(中英文), 2024, 54(3): 259-266. |
[8] | 胡可云. Fe3O4基核壳纳米结构材料的制备及顺磁性研究[J]. 日用化学工业(中英文), 2024, 54(3): 298-304. |
[9] | 侯仕达, 王志飞, 王亚魁, 李俊, 姜亚洁, 耿涛. 多阳离子位点季铵盐与AEC复配体系的应用性能研究[J]. 日用化学工业(中英文), 2024, 54(2): 131-138. |
[10] | 杲款款, 杨素珍, 韩婷婷, 李燕, 袁春颖, 毛欣宇. 王浆酸及其护肤功效的研究进展[J]. 日用化学工业(中英文), 2024, 54(2): 209-215. |
[11] | 韩旭, 吴槚佳, 武娜, 尚亚卓. 新型乳化体系及其在化妆品中的应用(V)——Janus乳液[J]. 日用化学工业(中英文), 2024, 54(1): 24-31. |
[12] | 孙锦月, 何聪芬. 网络药理学研究现状及在化妆品领域应用展望[J]. 日用化学工业(中英文), 2023, 53(9): 1087-1093. |
[13] | 黄芳, 张营, 熊玥, 周利丹, 卢伊娜. 望春花(M. biondi)花提取物缓解UVB导致皮肤损伤的作用研究[J]. 日用化学工业(中英文), 2023, 53(9): 1065-1072. |
[14] | 熊洁, 杨丹, 孟宏, 何一凡, 裴晓静. 阿魏酸皮肤生理作用及其化妆品包载技术研究进展[J]. 日用化学工业(中英文), 2023, 53(9): 1073-1079. |
[15] | 张婉萍, 盖厚辰, 张冬梅, 蒋汶, 朱广用. 环糊精包埋技术研究进展及其在化妆品原料包埋中的应用[J]. 日用化学工业(中英文), 2023, 53(7): 808-815. |
|