China Surfactant Detergent & Cosmetics ›› 2024, Vol. 54 ›› Issue (6): 708-717.doi: 10.3969/j.issn.2097-2806.2024.06.012
• Reviews • Previous Articles Next Articles
Hui Liu1,Sijia Yang1,Hankun Ren2,Zhaohui Qu3,Libo Zheng3,Shujing Li1,*()
Received:
2023-06-16
Revised:
2024-06-02
Online:
2024-06-22
Published:
2024-06-24
Contact:
* E-mail: CLC Number:
Hui Liu, Sijia Yang, Hankun Ren, Zhaohui Qu, Libo Zheng, Shujing Li. Research progress of extraction and isolation of natural plant polysaccharides and their applications in skin care[J].China Surfactant Detergent & Cosmetics, 2024, 54(6): 708-717.
Tab. 1
Comparison of advantages and disadvantages of extraction methods for plant polysaccharides"
方法 | 优点 | 缺点 |
---|---|---|
热水提取法 | 操作简单,成本低,应用最广泛 | 反复提取,费时费力,纯度低 |
酸碱萃取法 | 节省时间,提取率高 | 对多糖有选择性,酸碱浓度难以控制 |
酶提取法 | 条件温和、速度快、收率高、纯度高 | 酶用量大,成本高,且有酶降解产物 |
超声波提取法 | 简单省时,低能耗,应用广泛 | 很容易改变多糖的结构 |
超高压萃取法 | 具有操作简单、时间短、产量高等优点 | 不适用于高淀粉物料 |
微波提取法 | 最省时、省溶剂,有利于热不稳定物质的萃取 | 会降解多糖,不利于大规模生产 |
超临界流体萃取法 | 溶剂可回收,无残留,应用前景广阔 | 设备复杂,成本高,提取范围有限 |
Tab. 2
Methods for purifying polysaccharides from natural sources"
方法 | 机制 | 适用范围 | 目标生产属性 | 优点 | 缺点 |
---|---|---|---|---|---|
膜分离 | 根据膜孔径的不同分离多糖 | 不同分子量分布的粗多糖 | 获得不同分子量的多糖 | ①收率高;②不易破坏多糖的生物活性; ③能耗低 | ①易产生浓差极化现象;②膜易受到污染 |
超速离心 | 多糖沉积比不同 | 不同分子量分布的粗多糖 | 获得不同分子量的均质多糖 | 不易破坏多糖的生物活性 | 收率低 |
有机溶剂沉淀 | 多糖在不同溶剂中的溶解度不同 | 不同分子量分布的粗多糖 | 获得不同分子量的多糖 | ①工艺简单;②可以获得不同分子量分布的多糖 | ①易产生共沉淀;②效率低 |
季铵盐沉淀 | 长链季铵盐可与酸性多糖或长链多糖形成络合物而沉淀 | 大多数粗多糖,尤其是酸性多糖 | 获得酸性和中性的粗多糖 | ①成本低;②设备要求简单 | ①多糖结构破坏大; ②收率低 |
阴离子交换 层析 | 依据流动相中组分离子与交换剂上的平衡离子进行可逆交换时结合力大小差异分离 | 酸性、中性和粘性多糖,尤其是与蛋白质结合的复杂多糖 | 获得均质多糖 | 分离能力大,效果 满意 | ①成本高;②洗脱液流速易受体积变化影响,对洗脱液pH值或溶液离子强度的变化敏感 |
凝胶柱层析 | 分子筛原理,根据多糖的大小和形状 | 大多数粗多糖 | 获得不同分子量范围的均质多糖 | 快速、方便、有效的分离过程 | ①分离条件严格;②不适用于粘多糖的分离 |
亲和柱层析 | 分子亲和力 | 对色谱柱上的基团有亲和力的多糖 | 获得具有不同性质的均质多糖 | ①可分离含量较少的多糖;②多糖的一次性富集度很高 | 很难找到合适的配体 |
纤维素柱层析 | 分子筛原理 | 酸性和中性多糖 | 获得不同分子量范围的多糖 | 高纯度多糖 | 费时,特别是对于更粘稠的酸性多糖 |
大孔树脂层析 | 分子筛与选择性吸附原理 | 大多数多糖 | 获得不同分子量范围的多糖 | ①吸附容量高;②选择性好;③重现性好 | 分离不同性质多糖的能力较弱 |
[1] | Ren Y, Bai Y P, Zhang Z D, et al. The preparation and structure analysis methods of natural polysaccharides of plants and fungi: A review of recent development[J]. Molecules, 2019, 24 (17) : 3122. |
[2] |
Yu Y, Shen M Y, Song Q Q, et al. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review[J]. Carbohydrate Polymers, 2018, 183: 91-101.
doi: S0144-8617(17)31406-6 pmid: 29352896 |
[3] | Guru P R, Kar R K, Nayak A K, et al. A comprehensive review on pharmaceutical uses of plant-derived biopolysaccharides[J]. International Journal of Biological Macromolecules, 2023: 123454. |
[4] | Zhou S Y, Rahman A, Li J H, et al. Extraction methods affect the structure of Goji (Lycium barbarum) polysaccharides[J]. Molecules, 2020, 25 (4): 936. |
[5] | Liu Y, Guo Q W, Zhang S M, et al. Polysaccharides from discarded stems of trollius chinensis bunge elicit promising potential in cosmetic industry: characterization, moisture retention and antioxidant activity[J]. Molecules, 2023, 28 (7) : 3114. |
[6] | Mu S, Yang W J, Huang G L. Antioxidant activities and mechanisms of polysaccharides[J]. Chemical Biology & Drug Design, 2021, 97 (3) : 628-632. |
[7] |
Alkahtani J, Elshikh M S, Almaary K S, et al. Anti-bacterial, anti-scavenging and cytotoxic activity of garden cress polysaccharides[J]. Saudi Journal of Biological Sciences, 2020, 27 (11) : 2929-2935.
doi: 10.1016/j.sjbs.2020.08.014 pmid: 33100848 |
[8] |
Cui C, Chen S, Wang X Y, et al. Characterization of Moringa oleifera roots polysaccharide MRP-1 with anti-inflammatory effect[J]. International Journal of Biological Macromolecules, 2019, 132: 844-851.
doi: S0141-8130(18)37268-4 pmid: 30936009 |
[9] | Choi J U, Nam J H, Rod-In W, et al. Korean ginseng berry polysaccharide enhances immunomodulation activities of peritoneal macrophages in mice with cyclophosphamide-induced immunosuppression[J]. Journal of Microbiology and Biotechnology, 2023, 33 (6) : 1-8. |
[10] |
Souza R O S, Assreuy A M S, Madeira J C, et al. Purified polysaccharides of geoffroea spinosa barks have anticoagulant and antithrombotic activities devoid of hemorrhagic risks[J]. Carbohydrate Polymers, 2015, 124: 208-215.
doi: 10.1016/j.carbpol.2015.01.069 pmid: 25839813 |
[11] | Huang G L, Chen F, Yang W J, et al. Preparation, deproteinization and comparison of bioactive polysaccharides[J]. Trends in Food Science & Technology, 2021, 109: 564-568. |
[12] | Guo H, Yuan Q, Fu Y, et al. Extraction optimization and effects of extraction methods on the chemical structures and antioxidant activities of polysaccharides from snow chrysanthemum (Coreopsis Tinctoria)[J]. Polymers, 2019, 11 (2) : 215. |
[13] | Mei X Y, Tang Q L, Huang G L, et al. Preparation, structural analysis and antioxidant activities of phosphorylated (1→3)-β-D-glucan[J]. Food Chemistry, 2019, 309: 125791. |
[14] | Song Y R, Sung S K, Jang M, et al. Enzyme-assisted extraction, chemical characteristics, and immunostimulatory activity of polysaccharides from Korean ginseng (Panax ginseng Meyer)[J]. International Journal of Biological Macromolecules, 2018, 116: 1089-1097. |
[15] |
Chen G J, Fang C C, Ran C X, et al. Comparison of different extraction methods for polysaccharides from bamboo shoots (Chimonobambusa quadrangularis) processing by-products[J]. International Journal of Biological Macromolecules, 2019, 130: 903-914.
doi: S0141-8130(18)35131-6 pmid: 30849468 |
[16] | Ahmadi S, Mainali R, Nagpal R, et al. Dietary polysaccharides in the amelioration of gut microbiome dysbiosis and metabolic diseases[J]. Obesity & Control Therapies: Open Access, 2017, 4 (3). |
[17] | Zou X L, Liu Y X, Tao C, et al. CO2 supercritical fluid extraction and characterization of polysaccharide from bamboo (Phyllostachys heterocycla) leaves[J]. Journal of Food Measurement and Characterization, 2018, 12: 35-44. |
[18] |
Chen X, Zhang H B, Du W Q, et al. Comparison of different extraction methods for polysaccharides from crataegus pinnatifida bunge[J]. International Journal of Biological Macromolecules, 2020, 150: 1011-1019.
doi: S0141-8130(19)37875-4 pmid: 31712144 |
[19] | Wu H Y, Shang H M, Guo Y, et al. Comparison of different extraction methods of polysaccharides from cup plant (Silphium perfoliatum L.)[J]. Process Biochemistry, 2020, 90: 241-248. |
[20] |
Zhang W J, Huang J, Wang W, et al. Extraction, purification, characterization and antioxidant activities of polysaccharides from cistanche tubulosa[J]. International Journal of Biological Macromolecules, 2016, 93: 448-458.
doi: S0141-8130(16)30838-8 pmid: 27593241 |
[21] | Li J C, Huang G L. Extraction, purification, separation, structure, derivatization and activities of polysaccharide from Chinese date[J]. Process Biochemistry, 2021, 110: 231-242. |
[22] | Albuquerque P B S, de Oliveira W F, dos Santos S P M, et al. Skincare application of medicinal plant polysaccharides—A review[J]. Carbohydrate Polymers, 2022, 277: 118824. |
[23] | Yan Maoqiang, Liu Li, Lu Chengzhi. Water content of the stratum corneum and its effect on the biological function of the skin[J]. Journal of Clinical Dermatology, 2008, 37 (12) : 816-818. |
[24] |
Vijayendra S V N, Shamala T R. Film forming microbial biopolymers for commercial applications—A review[J]. Critical Reviews in Biotechnology, 2014, 34 (4) : 338-357.
doi: 10.3109/07388551.2013.798254 pmid: 23919238 |
[25] | Sebti I, Coma V. Active edible polysaccharide coating and interactions between solution coating compounds[J]. Carbohydrate Polymers, 2002, 49 (2) : 139-144. |
[26] |
Li J X, Chi Z, Yu L J, et al. Sulfated modification, characterization, and antioxidant and moisture absorption/retention activities of a soluble neutral polysaccharide from enteromorpha prolifera[J]. International Journal of Biological Macromolecules, 2017, 105: 1544-1553.
doi: S0141-8130(16)31932-8 pmid: 28363657 |
[27] | Chen M, Sun Y, Zhao Y. Study on the moisturizing effect of dendrobium officinale[J]. Acta Universitatis Traditionis Medicalis Sinensis Pharmacologiaeque Shanghai, 2015 (29) : 70-73. |
[28] | Zhang Z S, Wang X M, Han Z P, et al. Purification, antioxidant and moisture-preserving activities of polysaccharides from papaya[J]. Carbohydrate Polymers, 2012, 87 (3) : 2332-2337. |
[29] | Chen Zheng, Gao Youjun, Deng Fangfei, et al. Microwave extraction of polysaccharides from Osmanthus fragrans leaves and their moisture absorption and moisturizing properties and antioxidant properties[J]. New Chemical Materials, 2022, 50 (S1) : 337-340. |
[30] | Chanpirom S, Saewan N, Sripisut T. Alternative utilization of vegetable crop: pumpkin polysaccharide extract and their efficacy on skin hydration[J]. Cosmetics, 2022, 9 (6) : 113. |
[31] | Zou Pengfei, Liu Zhihe, Lu Wancheng, et al. Skin’s own moisturizing system and the design of moisturizing skin care products[J]. Science of Daily Chemicals, 2012, 35 (1) : 18-20. |
[32] | Liu L Y, Chen X D, Wu B Y, et al. Influence of aloe polysaccharide on proliferation and hyaluronic acid and hydroxyproline secretion of human fibroblasts in vitro[J]. Journal of Chinese Integrative Medicine, 2010, 8 (3) : 256-262. |
[33] |
Huang G L, Mei X Y, Hu J C. The antioxidant activities of natural polysaccharides[J]. Current Drug Targets, 2017, 18 (11) : 1296-1300.
doi: 10.2174/1389450118666170123145357 pmid: 28117001 |
[34] | Shi X, Cheng W, Wang Q, et al. Exploring the protective and reparative mechanisms of G. lucidum polysaccharides against H2O2-induced oxidative stress in human skin fibroblasts[J]. Clinical, Cosmetic and Investigational Dermatology, 2021: 1481-1496. |
[35] | Byun E B, Song H Y, Kim W S. Polysaccharides from annona muricata leaves protect normal human epidermal keratinocytes and mice skin from radiation-induced injuries[J]. Radiation Physics and Chemistry, 2020, 170: 108672. |
[36] |
Mei X Y, Yang W J, Huang G L, et al. The antioxidant activities of balsam pear polysaccharide[J]. International Journal of Biological Macromolecules, 2020, 142: 232-236.
doi: S0141-8130(19)37208-3 pmid: 31669276 |
[37] |
Chen S H, Huang H L, Huang G L. Extraction, derivatization and antioxidant activity of cucumber polysaccharide[J]. International Journal of Biological Macromolecules, 2019, 140: 1047-1053.
doi: S0141-8130(19)36384-6 pmid: 31454644 |
[38] | Zhou S Y, Huang G L, Huang H H. Extraction, derivatization and antioxidant activities of onion polysaccharide[J]. Food Chemistry, 2022, 388: 133000. |
[39] | Liu Ting, Liu Fang, Chen Liang, et al. Evaluation on the anti-acne and anti-inflammatory effects of chinese herbal composite cosmetics[J]. China Surfactant Detergent & Cosmetics, 2020, 50 (8) : 553-559. |
[40] | Biswas S K. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox?[J]. Oxidative Medicine and Cellular Longevity, 2016. |
[41] |
Wang B Y, Tai M L, Zhang K, et al. Elaeagnus L gum polysaccharides alleviate the impairment of barrier function in the dry skin model mice[J]. Journal of Cosmetic Dermatology, 2021, 20 (2) : 647-656.
doi: 10.1111/jocd.13541 pmid: 33098181 |
[42] | Wang L S, Yang K Y, Jing R R, et al. Protective effect of saussurea involucrata polysaccharide against skin dryness induced by ultraviolet radiation[J]. Frontiers in Pharmacology, 2023, 14: 1089537. |
[43] | Yang Yuhang, Yang Ziqing, Xu Haixu, et al. Pomegranate leaf polysaccharide extraction process optimization and in vitro activity analysis[J]. Journal of Feed Research, 2023, 46 (10) : 90-95. |
[44] | Di Domenico E G, Farulla I, Prignano G, et al. Biofilm is a major virulence determinant in bacterial colonization of chronic skin ulcers independently from the multidrug resistant phenotype[J]. International Journal of Molecular Sciences, 2017, 18 (5) : 1077. |
[45] | Berger P A, Ford A B, Brown-Joel Z, et al. Angioinvasive fungal infections impacting the skin[J]. Journal of the American Academy of Dermatology, 2019, 80 (4). |
[46] | Zhou Y, Chen X X, Chen T T, et al. A review of the antibacterial activity and mechanisms of plant polysaccharides[J]. Trends in Food Science & Technology, 2022, 123: 264-280. |
[47] | Ghazala I, Sila A, Frikha F, et al. Antioxidant and antimicrobial properties of water soluble polysaccharide extracted from carrot peels by-products[J]. Journal of Food Science and Technology, 2015, 52: 6953-6965. |
[48] |
Hammami N, Gara A B, Bargougui K, et al. Improved in vitro antioxidant and antimicrobial capacities of polysaccharides isolated from salicornia arabica[J]. International Journal of Biological Macromolecules, 2018, 120: 2123-2130.
doi: S0141-8130(18)33566-9 pmid: 30217647 |
[49] |
Xiao Z Q, Zhang Q, Dai J, et al. Structural characterization, antioxidant and antimicrobial activity of water-soluble polysaccharides from bamboo (Phyllostachys pubescens Mazel) leaves[J]. International Journal of Biological Macromolecules, 2020, 142: 432-442.
doi: S0141-8130(19)34968-2 pmid: 31593720 |
[50] | Lan Y, Zeng W, Dong X, et al. Opsin 5 is a key regulator of ultraviolet radiation‐induced melanogenesis in human epidermal melanocytes[J]. British Journal of Dermatology, 2021, 185 (2) : 391-404. |
[51] |
Lei T C, Virador V M, Vieira W D, et al. A melanocyte-keratinocyte coculture model to assess regulators of pigmentation in vitro[J]. Analytical Biochemistry, 2002, 305 (2) : 260-268.
pmid: 12054455 |
[52] |
Videira I F S, Moura D F L, Magina S. Mechanisms regulating melanogenesis[J]. Anais Brasileiros De Dermatologia, 2013, 88: 76-83.
doi: S0365-05962013000100076 pmid: 23539007 |
[53] | Huang H C, Lin H, Huang M C. The lactoferricin B-derived peptide, LfB17-34, induces melanogenesis in B16F10 cells[J]. International Journal of Molecular Medicine, 2017, 39 (3) : 595-602. |
[54] | Hearing V J. Determination of melanin synthetic pathways[J]. The Journal of Investigative Dermatology, 2011, 131(E1): 8-11. |
[55] |
Yang B, Zhao M, Jiang Y. Optimization of tyrosinase inhibition activity of ultrasonic-extracted polysaccharides from longan fruit pericarp[J]. Food Chemistry, 2008, 110 (2) : 294-300.
doi: 10.1016/j.foodchem.2008.01.067 pmid: 26049219 |
[56] | Hu S H, Huang J H, Pei S Y, et al. Ganoderma lucidum polysaccharide inhibits UVB‐induced melanogenesis by antagonizing cAMP/PKA and ROS/MAPK signaling pathways[J]. Journal of Cellular Physiology, 2019, 234 (5) : 7330-7340. |
[57] | Fu W Y, Liao X H, Zhang Q, et al. Anti-melanogenesis effect from Wampee fruit pectin via α-MSH/TRY pathway in A375 cells[J]. BMC Complementary Medicine and Therapies, 2022, 22 (1) : 1-13. |
[58] | Tao X, Hu X, Wu T, et al. Characterization and screening of anti-melanogenesis and anti-photoaging activity of different enzyme-assisted polysaccharide extracts from Portulaca oleracea L[J]. Phytomedicine, 2023, 116: 154879. |
[59] |
Rout S, Banerjee R. Free radical scavenging, anti-glycation and tyrosinase inhibition properties of a polysaccharide fraction isolated from the rind from Punica granatum[J]. Bioresource Technology, 2007, 98 (16) : 3159-3163.
pmid: 17140791 |
[1] | Dan Wang, Shun Yu, Yuying Wang, Jingling Li, Chenyang Liu, Guozhong Lv. Madecassoside exerts anti-aging and skin repair effects by activating Nrf2-HO-1 pathway [J]. China Surfactant Detergent & Cosmetics, 2024, 54(6): 683-690. |
[2] | Haifeng Chen, Xiaoyu Yang, Haoyang Yu, Lei Liu, Runxia Li, Congfen He. Efficacy of thymol trimethoxycinnamate on melanin production, transfer and AGEs synthesis [J]. China Surfactant Detergent & Cosmetics, 2024, 54(6): 691-697. |
[3] | Laicheng Chen, Dongjie Chen, Jie Zou, Hong Ding, Yupeng Ye, Zhanhong Yang. Study on antioxidant and whitening effects of Anoectochilus roxburghii fermentation broth [J]. China Surfactant Detergent & Cosmetics, 2024, 54(6): 656-662. |
[4] | Yuxiang Gu,Yu Zhou,Shu Liu. Current status and analysis of physicochemical testing methods for evaluating the efficacy of skin care cosmetics [J]. China Surfactant Detergent & Cosmetics, 2024, 54(6): 727-732. |
[5] | Zidi Wang,Cheng Zhou,Huaming He,Qian Jiao,Qianqian Su,Yan Jia. Advances in the effects of shampoo surfactants on scalp and their underlying mechanisms [J]. China Surfactant Detergent & Cosmetics, 2024, 54(6): 733-743. |
[6] | Chuyuan Wei, Xiaoping Zhang, Jing Pan, Pei Peng, Yajuan Zhang, Chaofeng Mu. Preparation of 4-butylresorcinol-loaded cinnamon oil microemulsion-gel and its whitening and antioxidative effects [J]. China Surfactant Detergent & Cosmetics, 2024, 54(5): 520-526. |
[7] | Jianjie Cui, Anrui Cai, Yiwei Zhao. Using the Dermal-pharmacokinetics method to study the absorption process of skin care active ingredients by iontophoresis [J]. China Surfactant Detergent & Cosmetics, 2024, 54(5): 535-541. |
[8] | Jiaqi Zhang, Fan Wu, Yuqing Han, Qi Liu, Junjie Wang, Yao Pan. Multi-photon imaging technology and its application in cosmetic evaluation [J]. China Surfactant Detergent & Cosmetics, 2024, 54(5): 605-613. |
[9] | Gengtao Han, Zhuo Dong, Renhui Yao. Effects of sesamolin on AQP3 expression and Nrf2 signaling pathway activation in skin photoaging mice [J]. China Surfactant Detergent & Cosmetics, 2024, 54(4): 431-438. |
[10] | Wei Tao, Xiang Li. Simultaneous determination of 24 whitening components in cosmetics by high performance liquid chromatography [J]. China Surfactant Detergent & Cosmetics, 2024, 54(4): 484-489. |
[11] | Yifan He, Wenhai Wu, Munan Su, Xiaolong Jiang, Yuhong Liu. In vivo molecular mechanism of surfactant-induced skin irritation and skin protection by confocal Raman spectroscopy [J]. China Surfactant Detergent & Cosmetics, 2024, 54(4): 401-409. |
[12] | Cuicui Hu, Daihong Zhou, Xinwan Chen, Jialing Zhong, Canquan Mao. Efficacies and mechanisms of a formula of Chinese medicinal plants (MHC-20) against Streptococcus pyogenes [J]. China Surfactant Detergent & Cosmetics, 2024, 54(3): 282-289. |
[13] | Wu Bi, Xiaohong Pan, Xiaoqin Tu, Shuai Yin, Hui Sun. Analysis of the mechanism of anti-sensitive skin effect of cosmetic raw material Stephania tetrandra based on network pharmacology [J]. China Surfactant Detergent & Cosmetics, 2024, 54(3): 305-312. |
[14] | Yaoyao Li. Study on the anti-aging and antioxidant effects of isosinensetin [J]. China Surfactant Detergent & Cosmetics, 2024, 54(3): 313-319. |
[15] | Hongling Zhang, Lin Cheng, Haiyan Wang, Feiya Luo, Huiliang Zhang, Lei Sun. Using DPRA alternative method to evaluate the skin sensitization of 3 coumarins [J]. China Surfactant Detergent & Cosmetics, 2024, 54(2): 156-160. |
|