China Surfactant Detergent & Cosmetics ›› 2024, Vol. 54 ›› Issue (6): 718-726.doi: 10.3969/j.issn.2097-2806.2024.06.013
• Reviews • Previous Articles Next Articles
Jinjin Hu1,Zhiyu Liu2,Xiaoe Chen1,*(),Bei Chen2,*(
)
Received:
2023-05-28
Revised:
2024-06-03
Online:
2024-06-22
Published:
2024-06-24
Contact:
* E-mail: CLC Number:
Jinjin Hu, Zhiyu Liu, Xiaoe Chen, Bei Chen. Application of virtual screening technology in the development of melanin generation inhibitors[J].China Surfactant Detergent & Cosmetics, 2024, 54(6): 718-726.
[1] |
Maranduca M A, Branisteanu D, Serban D N, et al. Synthesis and physiological implications of melanic pigments[J]. Oncology Letters, 2019, 17 (5) : 4183-4187.
doi: 10.3892/ol.2019.10071 pmid: 30944614 |
[2] | Shoichet B K. Virtual screening of chemical libraries[J]. Nature, 2004, 432 (7019) : 862-865. |
[3] |
Yamaguchi Y, Brenner M, Hearing V J. The regulation of skin pigmentation[J]. Journal of Biological Chemistry, 2007, 282 (38) : 27557-27561.
doi: 10.1074/jbc.R700026200 pmid: 17635904 |
[4] | Hasegawa T. Tyrosinase-expressing neuronal cell line as in vitro model of Parkinson’s disease[J]. International Journal of Molecular Sciences, 2010, 11 (3) : 1082-1089. |
[5] |
Pillaiyar T, Manickam M, Jung S. Downregulation of melanogenesis: drug discovery and therapeutic options[J]. Drug Discovery Today, 2017, 22 (2) : 282-298.
doi: S1359-6446(16)30340-3 pmid: 27693716 |
[6] | Lai X, Wichers H J, Soler-Lopez M, et al. Structure and function of human tyrosinase and tyrosinase-related proteins[J]. Chemistry, 2018, 24 (1) : 47-55. |
[7] | Sanchez-Ferrer A, Rodriguez-Lopez J N, Garcia-Canovas F, et al. Tyrosinase: a comprehensive review of its mechanism[J]. Biochimica Biophysica Acta, 1995, 1247 (1) : 1-11. |
[8] | Li J, Feng L, Liu L, et al. Recent advances in the design and discovery of synthetic tyrosinase inhibitors[J]. European Journal of Medicinal Chemistry, 2021. |
[9] |
Wang Y, Viennet C, Robin S, et al. Precise role of dermal fibroblasts on melanocyte pigmentation[J]. Journal of Dermatological Science, 2017, 88 (2) : 159-166.
doi: S0923-1811(17)30082-8 pmid: 28711237 |
[10] |
Xu W, Gong L, Haddad M M, et al. Regulation of microphthalmia-associated transcription factor mitf protein levels by association with the ubiquitin-conjugating enzyme hUBC9[J]. Experimental Cell Research, 2000, 255 (2) : 135-143.
pmid: 10694430 |
[11] | Herraiz C, Garcia-Borron J C, Jimenez-Cervantes C, et al. MC1R signaling. Intracellular partners and pathophysiological implications[J]. Biochimica Biophysica Acta-Molecular Basis of Disease, 2017, 1863 (10) : 2448-2461. |
[12] | Azam M S, Kwon M, Choi J, et al. Sargaquinoic acid ameliorates hyperpigmentation through cAMP and ERK-mediated downregulation of MITF in alpha-MSH-stimulated B16F10 cells[J]. Biomed Pharmacother, 2018, 104: 582-589. |
[13] |
Pillaiyar T, Manickam M, Jung S H. Recent development of signaling pathways inhibitors of melanogenesis[J]. Cellular Signalling, 2017, 40: 99-115.
doi: S0898-6568(17)30238-3 pmid: 28911859 |
[14] | Song Kangkang. The effect of inhibitors on tyrosinase and the regulation of melanin production[D]. Xiamen: Xiamen University, 2007. |
[15] |
VanGelder C W G, Flurkey W H, Wichers H J. Sequence and structural features of plant and fungal tyrosinases[J]. Phytochemistry, 1997, 45 (7) : 1309-1323.
pmid: 9237394 |
[16] | Roulier B, Peres B, Haudecoeur R. Advances in the design of genuine human tyrosinase inhibitors for targeting melanogenesis and related pigmentations[J]. Journal of Medicinal Chemistry, 2020, 63 (22) : 13428-13443. |
[17] | Singh P, Pandey K M. Structural modeling of human tyrosinase protein using computational methods[J]. Biotechnological Research, 2016, 2 (1) : 15-24. |
[18] |
Matoba Y, Kumagai T, Yamamoto A, et al. Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis[J]. Journal of Biological Chemistry, 2006, 281 (13) : 8981-8990.
doi: 10.1074/jbc.M509785200 pmid: 16436386 |
[19] |
Harir M, Bellahcene M, Baratto M C, et al. Isolation and characterization of a novel tyrosinase produced by Sahara soil actinobacteria and immobilization on nylon nanofiber membranes[J]. Journal of Biotechnology, 2018, 265: 54-64.
doi: S0168-1656(17)31737-6 pmid: 29133199 |
[20] | Hsiao N W, Tseng T S, Lee Y C, et al. Serendipitous discovery of short peptides from natural products as tyrosinase inhibitors[J]. Journal of Chemical Information and Modeling, 2014, 54 (11) : 3099-3111. |
[21] | Tse T W. Hydroquinone for skin lightening: safety profile, duration of use and when should we stop[J]. Journal of Dermatological Treatment, 2010, 21 (5) : 272-275. |
[22] | Wang Xiaoqian. The ups and downs of arbutin-analysis of whitening ingredient arbutin[J]. Chinese Cosmetics, 2019 (10) : 85-87. |
[23] | He Min, Fan Meiyan, Yang Wei, et al. Research progress of kojic acid tyrosinase inhibitors[J]. Chemical Reagent, 2022, 44 (7) : 1001-1011. |
[24] | Yu J S, Kim A K. Effect of combination of taurine and azelaic acid on antimelanogenesis in murine melanoma cells[J]. Journal of Biomedical Science, 2010, 17: 1-5. |
[25] |
Ullah S, Kang D, Lee S, et al. Synthesis of cinnamic amide derivatives and their anti-melanogenic effect in α-MSH-stimulated B16F10 melanoma cells[J]. European Journal of Medicinal Chemistry, 2019, 161: 78-92.
doi: S0223-5234(18)30887-0 pmid: 30347330 |
[26] | Kamauchi H, Kinoshita K, Koyama K. Coumarins with anti-melanogenesis activities from a chemically engineered extract of a marine-derived fungus[J]. Heterocycles, 2018, 96 (2) : 273-285. |
[27] | Ujan R, Saeed A, Ashraf S, et al. Synthesis, computational studies and enzyme inhibitory kinetics of benzothiazole-linked thioureas as mushroom tyrosinase inhibitors[J]. Journal of Biomolecular Structure and Dynamics, 2021, 39 (18) : 7035-7043. |
[28] | Motiani R K, Tanwar J, Raja D A, et al. STIM1 activation of adenylyl cyclase 6 connects Ca2+ and cAMP signaling during melanogenesis[J]. Embo Journal, 2018, 37 (5). |
[29] | Pan C, Liu X, Zheng Y, et al. The mechanisms of melanogenesis inhibition by glabrid in: molecular docking, PKA/MITF and MAPK/MITF pathways[J]. Food Science and Human Wellness, 2023, 12 (1) : 212-222. |
[30] |
Kim B, Lee S, Choi K, et al. N-nicotinoyl tyramine, a novel niacinamide derivative, inhibits melanogenesis by suppressing MITF gene expression[J]. European Journal of Pharmacology, 2015, 764: 1-8.
doi: S0014-2999(15)30001-7 pmid: 26118836 |
[31] | Nishio T, Usami M, Awaji M, et al. Dual effects of acetylsalicylic acid on ERK signaling and MITF transcription leads to inhibition of melanogenesis[J]. Molecular and Cellular Biochemistry, 2016, 412(1-2) : 101-110. |
[32] | Villareal M O, Chaochaiphat T, Makbal R, et al. Molecular analysis of the melanogenesis inhibitory effect of saponins-rich fraction of argania spinosa leaves extract[J]. Molecules, 2022, 27 (19) : 6762. |
[33] | Jeon G, Ro H S, Kim G R, et al. Enhancement of melanogenic inhibitory effects of the leaf skin extracts of Aloe barbadensis Miller by the fermentation process[J]. Fermentation, 2022, 8 (11) : 580. |
[34] | Li Tingting, Zhou Yan, Yin Mingdan, et al. Based on the PKC/CREB/MITF pathway, the effects of resveratrol on the proliferation and melanin synthesis of human melanocytes after ultraviolet irradiation were investigated[J]. Occupation and Health, 2022, 38 (22) : 3054-3060. |
[35] |
Dhillon A S, Hagan S, Rath O, et al. MAPK kinase signalling pathways in cancer[J]. Oncogene, 2007, 26 (22) : 3279-3290.
doi: 10.1038/sj.onc.1210421 pmid: 17496922 |
[36] |
Chen S, Han C, Miao X, et al. Targeting MC1R depalmitoylation to prevent melanomagenesis in redheads[J]. Nat. Commun., 2019, 10 (1): 877.
doi: 10.1038/s41467-019-08691-3 pmid: 30787281 |
[37] |
Park S, Morya V K, Nguyen D H, et al. Unrevealing the role of P-protein on melanosome biology and structure, using siRNA-mediated down regulation of OCA2[J]. Mol. Cell Biochem., 2015, 403 (1-2) : 61-71.
doi: 10.1007/s11010-015-2337-y pmid: 25656818 |
[38] | Zhu Jun, Ji Chong, Qiu Jing, et al. Application progress of virtual screening in the discovery of cosmetic efficacy raw materials[J]. Journal of Light Industry, 2023, 38 (1) : 119-126. |
[39] | Bagherzadeh K, Talari F S, Sharifi A, et al. A new insight into mushroom tyrosinase inhibitors: docking, pharmacophore-based virtual screening, and molecular modeling studies[J]. Journal of Biomolecular Structure & Dynamics, 2015, 33 (3) : 487-501. |
[40] | Choi J, Lee Y M, Jee J G. Thiopurine drugs repositioned as tyrosinase inhibitors[J]. International Journal of Molecular Sciences, 2017, 19 (1) : 77. |
[41] |
Choi J, Choi K E, Park S J, et al. Ensemble-based virtual screening led to the discovery of new classes of potent tyrosinase inhibitors[J]. Journal of Chemical Information and Modeling, 2016, 56 (2) : 354-367.
doi: 10.1021/acs.jcim.5b00484 pmid: 26750991 |
[42] | Vittorio S, Seidel T, German M P, et al. A Combination of pharmacophore and docking‐based virtual screening to discover new tyrosinase inhibitors[J]. Molecular Informatics, 2020, 39 (3) : 1900054. |
[43] | Lim D, Lee K J, Kim Y, et al. A basic domain-derived tripeptide inhibits MITF activity by reducing its binding to the promoter of genes[J]. Journal of Investigative Dermatology, 2021, 141 (10) : 2459-2469. |
[44] | Guo D, Lui G Y L, Lai S L, et al. RAB27A promotes melanoma cell invasion and metastasis via regulation of pro‐invasive exosomes[J]. International Journal of Cancer, 2019, 144 (12) : 3070-3085. |
[45] | Joung J Y, Lee H Y, Park J, et al. Identification of novel rab27a/melanophilin blockers by pharmacophore based virtual screening[J]. Applied Biochemistry and Biotechnology, 2014, 172 (4) : 1882-1897. |
[46] | Visser M, Kayser M, Grosveld F, et al. Genetic variation in regulatory DNA elements: the case of OCA2 transcriptional regulation[J]. Pigment Cell & Melanoma Research, 2014, 27 (2). |
[47] |
Morya V K, Dung N H, Singh B K, et al. Homology modelling and virtual screening of P-protein in a quest for novel antimelanogenic agent and In vitro assessments[J]. Experimental Dermatology, 2014, 23 (11) : 838-842.
doi: 10.1111/exd.12549 pmid: 25236473 |
[48] |
Li Q, Yang H Y, Mo J, et al. Identification by shape-based virtual screening and evaluation of new tyrosinase inhibitors[J]. PeerJ, 2018, 6: 4206.
doi: 10.7717/peerj.4206 pmid: 29383286 |
[49] | Bo W C, Chen L, Qin D Y, et al. Application of quantitative structure-activity relationship to food-derived peptides: Methods, situations, challenges and prospects[J]. Trends in Food Science & Technology, 2021, 114: 176-188. |
[50] |
Gao H W. Predicting tyrosinase inhibition by 3D QSAR pharmacophore models and designing potential tyrosinase inhibitors from traditional Chinese medicine database[J]. Phytomedicine, 2018, 38: 145-157.
doi: S0944-7113(17)30173-3 pmid: 29425647 |
[1] | Ning Li, Ennian Li, Hongbo Chen, Fang Cheng, Hengfang Zou, Hongpeng Chen. Advances of functional components in whitening cosmetic [J]. China Surfactant Detergent & Cosmetics, 2024, 54(1): 80-89. |
[2] | Guo Fangyu, Han Tingting, Wang Xiaona, Chen Yurong, Wang Xiaomei, Yang Suzhen. Process optimization and anti-aging, moisturizing and whitening effects of traditional Chinese medicine bi-directional fermentation broth [J]. China Surfactant Detergent & Cosmetics, 2023, 53(5): 523-531. |
[3] | Zhang Kaiqiang,Xu Hujun. Study on the synthesis and performance of diglucosyl gallic acid [J]. China Surfactant Detergent & Cosmetics, 2022, 52(2): 140-146. |
[4] | Zha Yufeng,Huang Jiawen,Zhan Yi,Li Ting,Yan Hong,Wu Desong. Evaluation of antioxidant and whitening efficacy of Prunus mume extract [J]. China Surfactant Detergent & Cosmetics, 2022, 52(2): 172-179. |
[5] | He Ruiyuan,Wang Shuo,Wei Guili,Gong Xiaomei,Wu Peiying,Miao Jianhua. Study of whitening effect and the mechanism of Zhuang medicine Poecilobdella manillensis extract [J]. China Surfactant Detergent & Cosmetics, 2022, 52(1): 35-43. |
[6] | REN Qian-qian,WU Hua,JIN Jian-ming. Botanical cosmetic ingredient (Ⅱ)Research and development of tyrosinase inhibitors from plant extracts in skin whitening [J]. China Surfactant Detergent & Cosmetics, 2021, 51(3): 178-185. |
[7] | WANG Ying,TANG Yin,WU Ya-ni. Effects of blend essential oil on melanogenesis in B16 cells of mice [J]. China Surfactant Detergent & Cosmetics, 2021, 51(3): 214-219. |
[8] | Luo Tianji,Mei Zikun,Song Jingjiu,Zhu Jun. Study on synthesis and whitening activity of isoferic acid amides [J]. China Surfactant Detergent & Cosmetics, 2021, 51(11): 1102-1108. |
[9] | WANG Yong-heng,LIANG Yan-hui,SUN Pei-dong. Study on the dual-target whitening activities of Ligusticum chuanxiong Hort. extracts [J]. China Surfactant Detergent & Cosmetics, 2020, 50(4): 249-254. |
[10] | ZHENG Xi,CHEN Zhi-duo,ZHANG De-meng,QIN Yi-min,YI Cai-xia,HUANG Xiao. Inhibitory effect of sodium alginate on the activity of tyrosinase [J]. China Surfactant Detergent & Cosmetics, 2019, 49(6): 388-392. |
[11] | WANG Fei-fei,WANG Min-zhu,WANG Han,HUANG Shan,DANZENG Jiang-bai,LI Bin. The effect of extract of Nepeta angustifolia C.Y.Wu on tyrosinase activity and kinetics [J]. China Surfactant Detergent & Cosmetics, 2019, 49(5): 315-319. |
[12] | ZHAO Si-qi,MENG Hong,YI Fan. Recommendation of computer-aided drug design for the screening of cosmetic plant source efficacy materials [J]. China Surfactant Detergent & Cosmetics, 2019, 49(4): 253-258. |
[13] | LI Zhi-ying,WANG Xue-han,GAO Rui-yuan. Microwave-assisted extraction technology of skin-whitening agent in white Poria cocos [J]. China Surfactant Detergent & Cosmetics, 2019, 49(4): 238-243. |
[14] | HAO Mi-mi, WANG Yan, LIU Yuan-yuan, BAO Yan, LI Hong-yan, ZHENG Lin. Study on the mechanism of inhibition of melanin by phenethyl resorcinol [J]. China Surfactant Detergent & Cosmetics, 2018, 48(5): 293-298. |
[15] | ZHANG Qing, XU Yong-wei, LIU Wei, GONG Sheng-zhao. Study on scavenging effect for hydroxyl radicals and inhibitory effect on tyrosinase in water soluble extracts fromChinese kiwifruit [J]. China Surfactant Detergent & Cosmetics, 2018, 48(3): 162-165. |
|