China Surfactant Detergent & Cosmetics ›› 2022, Vol. 52 ›› Issue (3): 309-315.doi: 10.3969/j.issn.1001-1803.2022.03.012
• Reviews • Previous Articles Next Articles
Liu Feng,Wang Xiaochong,Luo Jun,Wang Xiaowei(),Ying Guohong(
)
Received:
2021-05-25
Revised:
2022-02-25
Online:
2022-03-22
Published:
2022-03-21
Contact:
Xiaowei Wang,Guohong Ying
E-mail:138266258@qq.com;1150324055@qq.com
CLC Number:
Liu Feng,Wang Xiaochong,Luo Jun,Wang Xiaowei,Ying Guohong. Application analysis of rapid microbial counting method in the detection of aerobic bacterial count in cosmetics[J].China Surfactant Detergent & Cosmetics, 2022, 52(3): 309-315.
Tab. 1
Test methods for aerobic bacterial count in cosmetics in different countries"
国家 | 培养基 | 培养条件 | 微生物指标限值/(CFU·g-1·mL-1) | 参考文献 | |
---|---|---|---|---|---|
温度 | 时间 | ||||
中国 | 卵磷脂吐温80营养琼脂培养基 | (36±1) ℃ | (48±2)h | 眼部、口唇和婴幼儿化妆品≤500;其他化妆品≤1 000 | [ |
美国 | 改良的卵磷脂琼脂培养基 (Modified Letheen agar) | (30±2) ℃ | 48 h | 眼部化妆品≤500;其他化妆品≤1 000 | [ |
欧盟 | 大豆酪蛋白消化琼脂培养基 | 30~35 ℃ | 3~5 d | 眼部、接触黏膜和3岁以下儿童化妆品≤ 100;其他化妆品≤1 000 | [ |
韩国 | 改良的卵磷脂琼脂培养基 | (30±2) ℃ | 48 h | 眼部和婴幼儿化妆品≤500;其他化妆品≤ 1 000 | [ |
ISO 21149 | 大豆酪蛋白消化琼脂培养基 | (32.5±2.5) ℃ | (72±6)h | 眼部、接触黏膜和3岁以下儿童化妆品≤ 100;其他化妆品≤1 000 | [ |
Tab. 2
Comparison between rapid microbial counting method and plate count method"
微生物计数方法 | 优点 | 局限性 | 是否适用于化妆品菌落总数测定 |
---|---|---|---|
平板计数法 | 准确性高;成本低 | 检测时间长 | 适用于化妆品菌落总数测定 |
荧光显微镜计数法 | 直接计数;准确性高;检测时间短 | 需要操作经验;容易产生误差 | |
流式细胞仪计数法 | 灵敏度高;准确性高;检测时间短 | 仪器昂贵;需要操作经验 | |
荧光计数法 | 操作简单;检测时间短 | 灵敏度低 | 适用于化妆品菌落总数测定,但是灵敏度低 |
TEMPO®系统计数法 | 操作简单; 准确性高 | 仪器昂贵; 需要进行微生物培养 | 在化妆品中有应用,但菌落总数测定结果与平板计数法的相关性较低 |
分子生物学计数法 | 灵敏度高;检测时间短 | 容易出现假阳性;不适用于含多种微生物类型的化妆品 | 不适用于化妆品菌落总数测定;特异性高,只能用于定性或定量检测某种微生物 |
酶联免疫吸附法 | 灵敏度高;检测时间相对短 | 不适用于含多种微生物类型的化妆品 | |
光学生物传感器法 | 操作简单;检测时间短 | 成本高;不适用于含多种微生物类型的化妆品 | |
质谱计数法 | 灵敏度高;检测时间短 | 仪器昂贵;不适用于含多种微生物类型的化妆品 | |
微生物代谢法 | 操作简单;检测时间短 | 成本高;需要进行微生物培养 | 防腐剂影响微生物生长,计数不准确,不适用于化妆品菌落总数测定 |
微流控系统计数法 | 准确性高;检测时间短 | 仪器昂贵;需要进行微生物培养 | |
MicroSnapTM计数法 | 操作简单;检测时间短 | 仪器昂贵;需要进行微生物培养 | |
SimplateTM计数法 | 操作简单;准确性高 | 仪器昂贵;需要进行微生物培养 |
[1] | Ministry of Health of the People’s Republic of China. Hygienic standard for cosmetics[S]. Beijing: Ministry of Health of the People’s Republic of China, 2015. |
[2] | US FDA (Food and Drug Administration). BAM: Microbiological methods for cosmetics chapter 23 [S/OL]. (2017-10-31). https://www.fda.gov/food/foodscienceresearch/laboratorymethods/ucm565586.htm. |
[3] | The Scientific Committee on Consumers Safety, Directorate-General for Health and Consumer Protection of the European Commission. The SSCS's Notes of guidance for the testing of cosmetic ingredients and their safety evaluation, 10th revision [EB/OL]. (2018-10-24, 25). https://ec.europa.eu/health/sites/health/files/scientific_committees/consumer_safety/docs/sccs_o_224.pdf. |
[4] | Ministry of Food and Drug Safety. Regulations on the Safety Standards, etc. of Cosmetics[S/OL]. (2016-04-22). https://www.mfds.go.kr/eng/index.do. |
[5] | International Organization for Standardization. Cosmetics-Microbiology-Enumeration and detection of aerobic mesophilic bacteria: ISO 22149: 2019[S]. Geneva: ISO, 2019. |
[6] |
Seo E Y, Ahn T S, Zo Y G. Agreement, precision, and accuracy of epifluorescence microscopy methods for enumeration of total bacterial numbers[J]. Applied and Environmental Microbiology, 2010, 76(6) : 1981.
doi: 10.1128/AEM.01724-09 |
[7] |
Mahnoud M A M, Zaki R S, Elhafeez H H A. An epifluorescence-based technique accelerates risk assessment of aggregated bacterial communities in carcass and environment[J]. Environmental Pollution, 2020, 260:113950.
doi: 10.1016/j.envpol.2020.113950 |
[8] |
Bach H J, Tomanova J, Schloter M, et al. Enumeration of total bacteria and bacteria with genes for proteolytic activity in pure cultures and in environmental samples by quantitative PCR mediated amplification[J]. Journal of Microbiological Methods, 2002, 49(3) : 235-245.
pmid: 11869788 |
[9] | Wolf-Baca M, Siedlecka A. Detection of pathogenic bacteria in hot tap water using the qPCR method: preliminary research[J]. Springer Nature Sciences, 2019, 1:840. |
[10] |
Hudecova I. Digital PCR analysis of circulating nucleic acids[J]. Clinical Biochemistry, 2015, 48(15) : 948-956.
doi: 10.1016/j.clinbiochem.2015.03.015 pmid: 25828047 |
[11] |
Pacocha N, Scheler O, Novwak M M, et al. Direct droplet digital PCR (dddPCR) for species specific, accurate and precise quantification of bacteria in mixed samples[J]. Anal Methods, 2019, 11(44) : 5730-5735.
doi: 10.1039/C9AY01874C |
[12] |
Huber D, Voithenberg L V V, Kaigala G V. Fluorescence in situ hybridization (FISH): History, limitations and what to expect from micro-scale FISH?[J]. Micro and Nano Engineering, 2018, 1:15-24.
doi: 10.1016/j.mne.2018.10.006 |
[13] |
Kuo J T, Chang L L, Yen C Y, et al. Development of fluorescence in situ hybridization as a rapid accurate method for detecting coliforms in water samples[J]. Biosensors, 2020, 11(1) : 8.
doi: 10.3390/bios11010008 |
[14] |
Pasulka A L, Howes A L, Kallet J G, et al. Visualization of probiotics via epifluorescence microscopy and fluorescence in situ hybridization (Fish)[J]. Journal of Microbiological Methods, 2021, 182:106151.
doi: 10.1016/j.mimet.2021.106151 pmid: 33592223 |
[15] |
Gaastra W. Enzyme-linked immunosorbant assay (ELISA)[J]. Methods in Molecular Biology, 1984, 1:349-355.
doi: 10.1385/0-89603-062-8:349 pmid: 20512705 |
[16] |
Shen Z Q, Hou N N, Jin M, et al. A novel enzyme-linked immunosorbent assay for detection of Escherichia coli O157: H7 using immunomagnetic and beacon gold nanoparticles[J]. Gut Pathogens, 2014, 6:14.
doi: 10.1186/1757-4749-6-14 |
[17] |
Lazcka O, Campo F J D, Munoz F X. Pathogen detection: A perspective of traditional methods and biosensors[J]. Biosensors and Bioelectronics, 2007, 22(7) : 1205-1217.
doi: 10.1016/j.bios.2006.06.036 |
[18] |
Higgins J A, Nasarabidi S, Karns J, et al. A handheld real time thermal cycler for bacterial pathogen detection[J]. Biosensors and Bioelectronics, 2003, 18(9) : 1115-1123.
pmid: 12788554 |
[19] | Oh B K, Lee W, Chun B S, et al. Surface plasmon resonance immunosensor for the detection of Yersinia enterocolitica[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2005, 257:369-374. |
[20] |
Wu H Q, Wu Q P, Zhang J M, et al. Study on rapid quantitative detection of total bacterial counts by the ATP-bioluminescence and application in probiotic products[J]. International Journal of Food Sciences and Technology, 2011, 46(5) : 921-929.
doi: 10.1111/ifs.2011.46.issue-5 |
[21] |
Fernandez P, Gabaldon J A, Periago M J. Detection and quantification of Alicyclobacillus acidoterrestric by electrical impedance in apple juice[J]. Food Microbiology, 2017, 68:34-40.
doi: 10.1016/j.fm.2017.06.016 |
[22] |
Nykyri J, Herrmann A M, Hakansson S. Isothermal microcalorimetry for thermal viable count of microorganisms in pure cultures and stabilized formulations[J]. BMC Microbiology, 2019, 19:65.
doi: 10.1186/s12866-019-1432-8 |
[23] |
Lehotová V, Petruláková M, Valík L’ubomír. Application of a new method to control microbial quality of foods based on the detection of oxygen consumption[J]. Acta Chimica Slovaca, 2016, 9(1) : 19-22.
doi: 10.1515/acs-2016-0004 |
[24] |
Ou F, McGoverin C, Swift S, et al. Absolute bacterial cell enumeration using flow cytometry[J]. Journal of Applied Microbiology, 2017, 123:464-477.
doi: 10.1111/jam.13508 pmid: 28600831 |
[25] |
Gunasekera T S, Attfield P V, Veal D A. A flow cytometry method for rapid detection and enumeration of total bacteria in milk[J]. Applied and Environmental Microbiology, 2000, 66(3) : 1228-1232.
doi: 10.1128/AEM.66.3.1228-1232.2000 pmid: 10698799 |
[26] |
Frossard A, Hammes F, Gessner M O. Flow cytometric assessment of bacterial abundance in soils, sediments and sludge[J]. Frontiers in Microbiology, 2016, 7:903.
doi: 10.3389/fmicb.2016.00903 pmid: 27379043 |
[27] |
Mao C P, Xue C F, Wang X Z, et al. Rapid quantification of pathogenic Salmonella typhimurium and total bacteria in eggs by nano-flow cytometry[J]. Talanta, 2020, 217:121020.
doi: 10.1016/j.talanta.2020.121020 |
[28] |
Amselem G, Guermonprez C, Drogue B, et al. Universal microfluidic platform for bioassays in anchored droplets[J]. Lab on a Chip, 2016, 16:4200.
doi: 10.1039/C6LC00968A |
[29] |
Scheler O, Pacocha N, Debski P R, et al. Optimized droplet digital CFU assay (ddCFU) provides precise quantification of bacteria over a dynamic range of 6 logs and beyond[J]. Lab on a Chip, 2017, 17:1980.
doi: 10.1039/c7lc00206h pmid: 28480460 |
[30] |
Kao Y T, Kaminski T S, Witod P, et al. Gravity-driven microfluidic assay for digital enumeration of bacteria and for antibiotic susceptibility testing[J]. Lab in a Chip, 2020, 20:54-63.
doi: 10.1039/C9LC00684B |
[31] |
Dogan U, Kasap E N, Sucularl F, et al. Multiplex enumeration of Escherichia coli and Salmonella enteritidis in a passive capillary microfluidic chip[J]. Analytical Methods, 2020, 12:3788-3796.
doi: 10.1039/D0AY01030H |
[32] |
Lin Y F, Hamme A T. Gold nanoparticle labeling based ICP-MS detection/measurement of bacteria, and their quantitative photothermal destruction[J]. Journal of Materials Chemistry B, 2015, 3:3573.
doi: 10.1039/C5TB00223K |
[33] |
London R, Schwedock J, Sage A, et al. An automated system for rapid non-destructive enumeration of growing microbes[J]. PLos One, 2010, 5(1) : e8609.
doi: 10.1371/journal.pone.0008609 |
[34] |
Yin Q Y, Nie M, Diwu Z J, et al. Establishment and application of a novel fluorescent-based analytical method for the rapid detection of viable bacteria in different samples[J]. Analytical Methods, 2020, 12:3933-3943.
doi: 10.1039/D0AY01247E |
[35] |
Ou F, McGoverin G, Swift S, et al. Near real-time enumeration of live and dead bacteria using a fibre-based spectroscopic device[J]. Scientific Reports, 2019, 9:4807.
doi: 10.1038/s41598-019-41221-1 |
[36] |
Meighan P, Smith M, Datta S, et al. The validation of the MicroSnap total for enumeration of total viable count in a variety of foods[J]. Journal of Aoac International, 2016, 99(3) : 686-694.
doi: 10.5740/jaoacint.16-0016 |
[37] |
Beuchat L R, Copeland F, Curiale M S, et al. Comparison of the SimplateTM total plate count method with PetrifilmTM, RedigelTM, and conventional pour plate methods for enumerating aerobic microorganisms in foods[J]. Journal of Food Protection, 1998, 61(1) : 14-18.
pmid: 9708246 |
[38] |
Jackson R W, Osborne K, Barnes G, et al. Multiregional evaluation of the SimplateTM heterotrophic plate count method compared to the standard plate count agar pour plate method in water[J]. Applied and Environmental Microbiology, 2000, 66(1) : 453-454.
doi: 10.1128/AEM.66.1.453-454.2000 pmid: 10618266 |
[39] |
Augusto N L, Beloti V, Barros A D A F, et al. Assessment of the efficiency of SimPlateTM total plate count color indicator (TPC CI) to quantify mesophilic aerobic microorganisms in pasteurized milk[J]. Brazilian Journal of Microbiology, 2002, 33(1) : 44-48.
doi: 10.1590/S1517-83822002000100009 |
[40] |
Cayer M P, Dussault N, Grandmont M J D, et al. Evaluation of the Tempo® system: improving the microbiological quality monitoring of human milk[J]. Frontiers in Pediatrics, 2020, 8:494.
doi: 10.3389/fped.2020.00494 |
[41] |
Yossa N, Smiley J, Huang M C, et al. Comparison of TEMPO BC with spiral plating methods for the enumeration of Bacillus cereus in cosmetic products either naturally preserved or preservd with phenoxyethanol[J]. Journal of AOAC International, 2019, 102(4) : 1080-1090.
doi: 10.5740/jaoacint.18-0375 |
[1] | Jingxuan Liu, Jianming Jin, Hua Wu. Botanical cosmetic ingredients (VII)Research and development of plant antifungal [J]. China Surfactant Detergent & Cosmetics, 2024, 54(3): 259-266. |
[2] | Wu Bi, Xiaohong Pan, Xiaoqin Tu, Shuai Yin, Hui Sun. Analysis of the mechanism of anti-sensitive skin effect of cosmetic raw material Stephania tetrandra based on network pharmacology [J]. China Surfactant Detergent & Cosmetics, 2024, 54(3): 305-312. |
[3] | Yaoyao Li. Study on the anti-aging and antioxidant effects of isosinensetin [J]. China Surfactant Detergent & Cosmetics, 2024, 54(3): 313-319. |
[4] | Liyuan Zhang, Linqi Yan, Qiaoyuan Cheng, Lvye Qi, Rong Wang, Liuqian Huang. Determination of 14 kinds of α-hydroxy acids and hydroxy esters in cosmetics [J]. China Surfactant Detergent & Cosmetics, 2024, 54(3): 353-359. |
[5] | Wei Xu, Po Zou, Changyu Li, Ming Yang, Yan Lu, Huiliang Li. Determination of 36 stimulants in cosmetics by ultra performance liquid chromatography-tandem mass spectrometry [J]. China Surfactant Detergent & Cosmetics, 2024, 54(3): 360-368. |
[6] | Kangfu Zhou, Yixuan Zhi, Feifei Wang, Yazhuo Shang. New emulsion system and its application in cosmetics (VI)Microemulsion [J]. China Surfactant Detergent & Cosmetics, 2024, 54(2): 139-148. |
[7] | Zhen Xie, Wei Huang, Jinsong Zhang, Shuhuai Chen, Linji Qu, Rong Kuang. Study on biomarkers of corneal injury in the evaluation of eye irritation of cosmetics [J]. China Surfactant Detergent & Cosmetics, 2024, 54(2): 161-167. |
[8] | Xiaohong Pan, Ziqi Gao, Zhen Chen, Shuai Yin, Haiping Huang, Bin Hu. Discussion on the current situation of research and management on the stability of cosmetic products in China [J]. China Surfactant Detergent & Cosmetics, 2024, 54(2): 201-208. |
[9] | Li Lu, Fang Fang, Youlong Feng, Ling Cao. Screening for illegal addition of sulfonamides in cosmetic products using ultra-performance liquid chromatographytriple quadrupoletandem mass spectrometry with precursor ion scanning [J]. China Surfactant Detergent & Cosmetics, 2024, 54(2): 216-223. |
[10] | Ren Wang, Yuanyang Wu, Jia Qiao, Linqi Yan, Cen Chen, Liyuan Zhang. Study on phenoxyethanol content in children’s cosmetics on the mark and preliminary risk assessment [J]. China Surfactant Detergent & Cosmetics, 2024, 54(2): 224-230. |
[11] | Yixiang Lu, Liting Wu, Jimin Jiang, Hailu Chen, Xuan Huang. Determination of tolnaftate and liranaftate in cosmetics by high performance liquid chromatography and verification by high performance liquid chromatography-tandem mass spectrometry [J]. China Surfactant Detergent & Cosmetics, 2024, 54(2): 231-238. |
[12] | Liyuan Zhang, Qiaoyuan Cheng, Cen Chen, Zehua Li, Liuqian Huang, Lvye Qi. Determination of 3 kinds of α-hydroxy acids and their esters in cosmetics by high performance liquid chromatography [J]. China Surfactant Detergent & Cosmetics, 2024, 54(1): 102-106. |
[13] | Linling Lu, Hui Lu, Chunyan Min, Yefei Qian. Determination of functional components of Glycyrrhizae, Ginseng and Scutellariae in facial masks by UHPLC-MS/MS [J]. China Surfactant Detergent & Cosmetics, 2024, 54(1): 107-113. |
[14] | Xu Han, Jiajia Wu, Na Wu, Yazhuo Shang. New emulsion system and its application in cosmetics (V) Janus emulsion [J]. China Surfactant Detergent & Cosmetics, 2024, 54(1): 24-31. |
[15] | Feng Liu, Yuanchang Deng, Guohong Ying, Xiaowei Wang. Establishment of duplex-PCR method for rapid detection of Pluralibacter gergoviae [J]. China Surfactant Detergent & Cosmetics, 2024, 54(1): 45-50. |
|