日用化学工业 ›› 2020, Vol. 50 ›› Issue (4): 213-219.doi: 10.3969/j.issn.1001-1803.2020.04.001
• 基础研究 • 下一篇
收稿日期:
2019-09-26
修回日期:
2019-11-07
出版日期:
2020-04-22
发布日期:
2020-04-24
通讯作者:
徐娜
作者简介:
李 俊(1994-),男,硕士研究生,电话:15035629479,E-mail:junli_tyut@163.com。
基金资助:
LI Jun1,ZHANG Xing-fang1,ZHANG Cheng-wei2,XU Na1,3()
Received:
2019-09-26
Revised:
2019-11-07
Online:
2020-04-22
Published:
2020-04-24
Contact:
Na XU
摘要:
表面活性剂分子在溶液中能够自组装形成多种形式的胶束结构,使溶液呈现出不同的流动特性。表面活性剂分子的自组装行为是其众多实际应用的重要基础,因此也一直是研究热点。表面活性剂分子的自组装行为受溶液条件(质量浓度、温度、流动强度等)影响显著,但目前实验条件下很难直观地、定量地对不同溶液条件下表面活性剂分子自组装行为进行系统监测和研究。本文选取CTAC/NaSal棒状胶束溶液系统为研究对象,通过介观布朗动力学模拟计算,系统研究了不同质量浓度、温度、剪切强度下CTAC棒状胶束的自组装行为。研究表明,溶液的质量浓度、温度以及对溶液施加的剪切强度对CTAC棒状胶束的自组装能力都具有促进和抑制的两面性影响,即适当的质量浓度、温度及剪切强度有利于CTAC棒状胶束之间的自组装;相反,过高或过低的质量浓度、温度及剪切强度都不利于CTAC棒状胶束之间的自组装。
中图分类号:
李俊,张兴芳,张成伟,徐娜. CTAC/NaSal表面活性剂棒状胶束自组装行为的介观布朗动力学模拟[J]. 日用化学工业, 2020, 50(4): 213-219.
LI Jun,ZHANG Xing-fang,ZHANG Cheng-wei,XU Na. Mesoscale Brownian dynamics simulation on the self-assembly behaviors of rodlike micelles of CTAC/NaSal surfactants[J]. China Surfactant Detergent & Cosmetics, 2020, 50(4): 213-219.
[1] |
Zou W Z, Tan G, Jiang H Q , et al. From well-entangled to partially-entangled wormlike micelles[J]. Soft Matter, 2019,15(4) : 642-655.
doi: 10.1039/c8sm02223b pmid: 30608505 |
[2] |
Yan H, Wang Y, Zhang L G , et al. Molecular dynamics simulation of spherical-to-threadlike micelle transition in a cationic surfactant solution[J]. Molecular Simulation, 2019,45(10) : 797-805.
doi: 10.1080/08927022.2019.1601190 |
[3] |
Dreiss C A . Wormlike micelles: Where do we stand? Recent developments, linear rheology and scattering techniques[J]. Soft Matter, 2007,3(8) : 956-970.
doi: 10.1039/b705775j |
[4] |
Zhu H Y, Gao X P, Song D Y , et al. Growth of boehmite nanofibers by assembling nanoparticles with surfactant micelles[J]. The Journal of Physical Chemistry B, 2004,108(14) : 4245-4247.
doi: 10.1021/jp049485u |
[5] |
Chen Juan, Jiang Qi . The role of self-assembly technology in the preparation of inorganic nanomaterials with special morphology[J]. Materials Review, 2019,33(3) : 85-92.
doi: 10.4103/0971-6203.42748 pmid: 19893698 |
[6] |
Gudala M, Banerjee S, Kumar A , et al. Rheological modeling and drag reduction studies of Indian heavy crude oil in presence of novel surfactant[J]. Petroleum Science and Technology, 2017,35(24) : 2287-2295.
doi: 10.1021/es001804h pmid: 11775142 |
[7] |
Gasljevic K, Hoyer K, Matthys E F . Intentional mechanical degradation for heat transfer recovery in flow of drag-reducing surfactant solutions[J]. Experimental Thermal and Fluid Science, 2017,84:251-265.
doi: 10.1016/j.expthermflusci.2017.02.004 |
[8] |
Huang C H, Liu D J, Wei J J , et al. Direct numerical simulation of surfactant solution flow in the wide-rib rectangular grooved channel[J]. AIChE Journal, 2018,64(7) : 2898-2912.
doi: 10.1002/aic.v64.7 |
[9] | Huang Zhiyu, Li Zhongqiang, Jing Xianwu , et al. Development and performance evaluation of the CO2/N2 switchable clean fracturing fluid[J]. Applied Chemical Industry, 2017,46(1) : 33-36. |
[10] | Zhang Y, Dai C L, Qian Y , et al. Rheological properties and formation dynamic filtration damage evaluation of a novel nanoparticle-enhanced VES fracturing system constructed with wormlike micelles[J]. Colloids & Surfaces A, 2018,553:244-252. |
[11] | Yang Zhaozhong, Zhu Jingyi, Li Xiaogang , et al. The performance of viscoelastic foamed fracturing fluids with nanoparticles[J]. Science Technology and Engineering, 2018,18(10) : 42-47. |
[12] | Han Yugui, Wang Qiuxia, Zhao Peng , et al. Study on properties and oil displacement of betaine surfactant EDAB and HPAM polymer solution[J]. Advances in Fine Petrochemicals, 2018,19(4) : 5-9. |
[13] | Yang J . Viscoelastic wormlike micelles and their applications[J]. Current Opinion in Colloid & Interface Science, 2002,7(5/6) : 276-281. |
[14] | Chu Z L, Feng Y J . Vegetable-derived long-chain surfactants synthesized via a “green” route[J]. ACS Sustainable Chemistry & Engineering, 2013,1:75-79. |
[15] |
Vinarov Z, Dobreva P, Tcholakova S . Effect of surfactant molecular structure on progesterone solubilization[J]. Journal of Drug Delivery Science and Technology, 2018,43:44-49.
pmid: 1851829 |
[16] |
Ohlendorf D, Interthal W, Hoffmann H . Surfactant systems for drag reduction: Physico-chemical properties and rheological behavior[J]. Rheologica Acta, 1986,25(5) : 468-486.
doi: 10.1007/BF01774397 |
[17] |
Rehage H, Hoffmann H . Viscoelastic surfactant solutions: Model systems for rheological research[J]. Molecular Physics, 1991,74(5) : 933-973.
doi: 10.1080/00268979100102721 |
[18] |
Padalkar K V, Pal O R, Gaikar V G . Rheological characterization of mixtures of cetyl trimethylammonium bromide and sodium butyl benzene sulfonate in aqueous solutions[J]. Journal of Molecular Liquids, 2012,173:18-28.
doi: 10.1016/j.molliq.2012.06.002 |
[19] | Xu Na, Wei Jinjia . Rheological characteristics of CTAC aqueous solutions under the combined effects of shearing and temperature[J]. Journal of Engineering Thermophysics, 2014,35(2) : 278-281. |
[20] | Mo Weinan, Zhang Hongxia, Li Longchao . Experimental investigation of rheological properties of surfactant solutions[J]. China Sciencepaper, 2018 ( 5) : 504-510. |
[21] | Xu N, Wei J J, Kawaguchi Y . Dynamic and energy analysis on the viscosity transitions with increasing temperature under shear for dilute CTAC surfactant solutions[J]. Industrial & Engineering Chemistry Research, 2016,55(8) : 2279-2286. |
[22] |
Zhang C W, Wei J J . Mesoscale simulation study of the structure and rheology of dilute solutions of flexible micelles[J]. Chemical Engineering Science, 2013,102:544-550.
doi: 10.1016/j.ces.2013.08.024 |
[23] |
Anachkov S E, Kralchevsky P A, Danov K D , et al. Disclike vs. cylindrical micelles: Generalized model of micelle growth and data interpretation[J]. Journal of Colloid and Interface Science, 2014,416:258-273.
doi: 10.1016/j.jcis.2013.11.002 |
[24] |
Castrejón-González E O, Banos V E M, Alvarado J F J , et al. Rheological model for micelles in solution from molecular dynamics[J]. Journal of Molecular Liquids, 2014,198:84-93.
doi: 10.1016/j.molliq.2014.07.016 |
[25] |
Sangwai A V, Sureshkumar R . Binary interactions and salt-induced coalescence of spherical micelles of cationic surfactants from molecular dynamics simulations[J]. Langmuir, 2011,28(2) : 1127-1135.
doi: 10.1021/la203745d pmid: 22149605 |
[26] | Liu F, Liu D J, Zhou W J , et al. Coarse-grained molecular dynamics simulations of the breakage and recombination behaviors of surfactant micelles[J]. Industrial & Engineering Chemistry Research, 2018,57:9018-9027. |
[1] | 张志升, 沈产量, 李建勋, 刘延强, 韩薇薇, 董三宝. 甜菜碱/AOS/Gemini季铵盐三元复合型泡排剂的研制与性能评价[J]. 日用化学工业(中英文), 2024, 54(3): 239-249. |
[2] | 李国峰, 刘凯楠, 莫文龙, 马腾. 页岩油藏渗吸驱油剂体系性能评价[J]. 日用化学工业(中英文), 2024, 54(3): 250-258. |
[3] | 张晓杰, 张明哲, 徐志成, 宫清涛, 张磊, 张路. 烷基羧酸甜菜碱驱油机理研究[J]. 日用化学工业(中英文), 2024, 54(2): 123-130. |
[4] | 侯仕达, 王志飞, 王亚魁, 李俊, 姜亚洁, 耿涛. 多阳离子位点季铵盐与AEC复配体系的应用性能研究[J]. 日用化学工业(中英文), 2024, 54(2): 131-138. |
[5] | 张红梅, 张永民. [芥酰胺苯甲酸][胆碱]离子液体表面活性剂的合成及性能研究[J]. 日用化学工业(中英文), 2024, 54(2): 149-155. |
[6] | 刘佩, 潘婷, 裴晓梅, 宋冰蕾, 蒋建中, 崔正刚, Bernard P. Binks. 非离子-阴离子Bola型表面活性剂和纳米SiO2颗粒协同稳定的双重响应型O/W乳状液[J]. 日用化学工业(中英文), 2024, 54(1): 1-15. |
[7] | 艾浩康, 姜亚洁, 王亚魁, 张璐, 耿涛. 硬脂酸酯双子季铵盐的合成及性能研究[J]. 日用化学工业(中英文), 2024, 54(1): 16-23. |
[8] | 张婉萍, 林延忠, 张倩洁, 张冬梅, 蒋汶. Ca2+介导的月桂酰甲基牛磺酸钠相行为研究[J]. 日用化学工业(中英文), 2024, 54(1): 32-37. |
[9] | 曾健, 王世红. 水溶包装洗涤剂包装图像元素视觉特征分析与设计[J]. 日用化学工业(中英文), 2024, 54(1): 95-101. |
[10] | 韩亚楠, 台秀梅, 刘英, 耿涛, 白艳云, 郭凌霄. 改性油脂乙氧基化物单独稳定的水包油高内相乳液[J]. 日用化学工业(中英文), 2023, 53(12): 1392-1397. |
[11] | 张永康, 刘萌萌, 万智卫, 王耀聪, 田咪咪, 秋列维. 联结基团对甜菜碱型双子表面活性剂清洁压裂液性能的影响[J]. 日用化学工业(中英文), 2023, 53(12): 1398-1404. |
[12] | 潘婷, 吴俊辉, 裴晓梅, 崔正刚. 新型拟双子表面活性剂构筑的蠕虫状胶束及其pH和温度响应行为[J]. 日用化学工业(中英文), 2023, 53(12): 1361-1368. |
[13] | 肖璐, 荣群, 白希, 莫洪波, 范维刚. 环境污染物布洛芬吸附材料的研究进展[J]. 日用化学工业(中英文), 2023, 53(12): 1437-1442. |
[14] | 张鑫, 张光华, 孙棋, 李慧, 唐明旋, 郭泽华. 叔胺型响应表面活性剂的合成及性能研究[J]. 日用化学工业(中英文), 2023, 53(11): 1250-1256. |
[15] | 杨超, 童志明, 王占生, 陈武. 聚合物及固体颗粒对原油乳状液稳定性影响机制研究[J]. 日用化学工业(中英文), 2023, 53(10): 1156-1165. |
|