[1] |
Cavalcante L S, Sczancoski J C, Batista N C, et al. Growth mechanism and photocatalytic properties of SrWO4 microcrystals synthesized by injection of ions into a hot aqueous solution[J]. Advanced Powder Technology, 2013, 24 (1) : 344-353.
doi: 10.1016/j.apt.2012.08.007
|
[2] |
Fan L, Fan Y X, Duan Y H, et al. Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd: YVO4 laser[J]. Applied Physics B, 2009, 94: 553-557.
doi: 10.1007/s00340-009-3396-0
|
[3] |
Liao J, Qiu B, Wen H, et al. Synthesis process and luminescence properties of Tm3+ in AWO4 (A=Ca, Sr, Ba) blue phosphors[J]. Journal of Alloys and Compounds, 2009, 487 (1-2) : 758-762.
doi: 10.1016/j.jallcom.2009.08.068
|
[4] |
Sridhar C, Sahu N, Seo Y S, et al. Comparative electrochemical, photocatalytic, and photoluminescence studies in SrWO4 and RGO-SrWO4 nanocomposites[J]. Journal of Electronic Materials, 2023, 52 (6) : 3759-3773.
doi: 10.1007/s11664-023-10342-9
|
[5] |
Arunpandian M, Sivaganesh D, Revathy M S, et al. Facile synthesis of spherically SrWO4 nanomaterials via surfactant-assisted co-precipitation method: an affordable catalyst for the mitigation of carcinogenic organic dye[J]. International Journal of Environmental Analytical Chemistry, 2022, 102: 5738-5755.
doi: 10.1080/03067319.2020.1803847
|
[6] |
Pereira P F S, Moura A P D, Nogueira I C, et al. Study of the annealing temperature effect on the structural and luminescent properties of SrWO4: Eu phosphors prepared by a non-hydrolytic sol-gel process[J]. Journal of Alloys & Compounds, 2012, 526: 11-21.
|
[7] |
Gao H, Yu C, Wang Y, et al. A novel photoluminescence phenomenon in a SrMoO4/SrWO4 micro/nano heterojunction phosphors obtained by the polyacrylamide gel method combined with low temperature calcination technology[J]. Journal of Luminescence, 2022, 243: 118660.
doi: 10.1016/j.jlumin.2021.118660
|
[8] |
Liao J, Qiu B, Wen H, et al. Hydrothermal synthesis and photoluminescence of SrWO4: Tb3+ novel green phosphor[J]. Materials Research Bulletin, 2009, 44 (9) : 1863-1866.
doi: 10.1016/j.materresbull.2009.05.013
|
[9] |
Swathi S, Yuvakkumar R, Kumar P S, et al. Scheelite-type Fe substituted SrWO4 for hydrogen evolution reaction under alkaline conditions[J]. Fuel, 2022, 316: 123309.
doi: 10.1016/j.fuel.2022.123309
|
[10] |
Wang S, Gao H, Wang Y, et al. Effect of the sintering process on the structure, colorimetric, optical and photoluminescence properties of SrWO4 phosphor powders[J]. Journal of Electronic Materials, 2020, 49: 2450-2462.
doi: 10.1007/s11664-020-07941-1
|
[11] |
Pereira P F S, Nogueira I C, Longo E, et al. Rietveld refinement and optical properties of SrWO4: Eu3+ powders prepared by the non-hydrolytic sol-gel method[J]. Journal of Rare Earths, 2015, 33 (2) : 113-128.
doi: 10.1016/S1002-0721(14)60391-4
|
[12] |
Chen D, Liu Z, Ouyang S, et al. Simple room-temperature mineralization method to SrWO4 micro/nanostructures and their photocatalytic properties[J]. The Journal of Physical Chemistry C, 2011, 115 (32) : 15778-15784.
doi: 10.1021/jp202406n
|
[13] |
Sczancoski J C, Cavalcante L S, Joya M R, et al. Synthesis, growth process and photoluminescence properties of SrWO4 powders[J]. Journal of Colloid and Interface Science, 2009, 330 (1) : 227-236.
doi: 10.1016/j.jcis.2008.10.034
pmid: 18990407
|
[14] |
Li Y, Li X, Wang S, et al. In-situ generated SrWO4/g-C3N4 heterojunction photocatalyst for enhanced visible light degradation activity of tetracycline[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 643: 128806.
doi: 10.1016/j.colsurfa.2022.128806
|
[15] |
Sivaganesh D, Saravanakumar S, Sivakumar V, et al. Sm3+ induced-SrWO4 phosphor: analysis of photoluminescence and photocatalytic properties with electron density distribution studies[J]. Journal of Materials Science: Materials in Electronics, 2020, 31 (11) : 8865-8883.
doi: 10.1007/s10854-020-03421-8
|
[16] |
Guo B, Gu Y. Preparation of an excellent Z‐type SrWO4@Bi2WO6 heterojunction photocatalyst and its photocatalytic performance under simulated sunlight[J]. Chemistry Select, 2021, 6 (34) : 9199-9210.
|
[17] |
El-Sheshtawy H S, Shoueir K R, El-Kemary M. Activated H2O2 on Ag/SiO2-SrWO4 surface for enhanced dark and visible-light removal of methylene blue and p-nitrophenol[J]. Journal of Alloys and Compounds, 2020, 842: 155848.
doi: 10.1016/j.jallcom.2020.155848
|
[18] |
Alhumade H, Akhtar J, Al-Shahrani S, et al. Ozonation of ibuprofen in presence of SrWO4/ZnO photocatalyst[J]. Emerging Contaminants, 2022, 8: 391-399.
doi: 10.1016/j.emcon.2022.10.001
|
[19] |
Sousa G S, Nobre F X, Júnior E A, et al. Photocatalytic performance of β-Ag2MoO4 microcrystals at different experimental conditions[J]. Environmental Nanotechnology, Monitoring & Management, 2020, 14: 100379.
|
[20] |
Pearson R G. Absolute electronegativity and hardness: Application to inorganic chemistry[J]. Inorganic Chemistry, 1988, 27 (4) : 734-740.
doi: 10.1021/ic00277a030
|
[21] |
Nosaka Y, Nosaka A Y. Generation and detection of reactive oxygen species in photocatalysis[J]. Chemical Reviews, 2017, 117 (17) : 11302-11336.
doi: 10.1021/acs.chemrev.7b00161
pmid: 28777548
|