日用化学工业(中英文) ›› 2022, Vol. 52 ›› Issue (12): 1259-1268.doi: 10.3969/j.issn.1001-1803.2022.12.001
• 基础研究 • 下一篇
齐佳悦1,2,毛燚1,2,陈林倩1,2,王靖1,2,杨成1,2,*(),孙亚娟1,2,*(
)
收稿日期:
2022-02-21
修回日期:
2022-12-02
出版日期:
2022-12-22
发布日期:
2022-12-29
通讯作者:
杨成,孙亚娟
基金资助:
Qi Jiayue1,2,Mao Yi1,2,Chen Linqian1,2,Wang Jing1,2,Yang Cheng1,2,*(),Sun Yajuan1,2,*(
)
Received:
2022-02-21
Revised:
2022-12-02
Online:
2022-12-22
Published:
2022-12-29
Contact:
Cheng Yang,Yajuan Sun
摘要:
为解决常见微凝胶体系释放过快、缓释效果差的问题,通过乳液法,一步制备了一种新型乙基纤维素包裹的海藻酸钠/壳聚糖微凝胶。对相同水相配比下制备出的水凝胶和微凝胶进行扫描电子显微镜观察、红外光谱、热失重效果、接触角分析和溶胀性能检测,证明了乙基纤维素包覆的海藻酸钠/壳聚糖微凝胶的成功制备。通过对小鼠单核巨噬细胞(RAW264.7)的细胞活性检测发现,微凝胶具有良好的生物相容性能,在100 mg/L的质量浓度下没有明显细胞毒性。利用模型药物甲基蓝考察了不同药物含量、乙基纤维素含量、海藻酸钠和壳聚糖含量、酸钙比(n(GDL) ∶n(EDTA-Ca)) 和钙含量对制备出的微凝胶粒径和包封率的影响,制备出微凝胶的包封率可达到67.1%。最后,对该体系的体外释放效果进行评价,结果显示该体系的持续释放时间长达15 h,且具有一定的pH敏感性。
中图分类号:
齐佳悦,毛燚,陈林倩,王靖,杨成,孙亚娟. 乙基纤维素-海藻酸钠/壳聚糖微凝胶的制备及表征[J]. 日用化学工业(中英文), 2022, 52(12): 1259-1268.
Qi Jiayue,Mao Yi,Chen Linqian,Wang Jing,Yang Cheng,Sun Yajuan. Preparation and characterization of ethyl cellulose-sodium alginate/chitosan microgels[J]. China Surfactant Detergent & Cosmetics, 2022, 52(12): 1259-1268.
[1] | Zhai Y, Zhai G. Advances in lipid-based colloid systems as drug carrier for topic delivery[J]. Journal of Controlled Release, 2014, 10 (193) : 90-99. |
[2] |
Zheng B, Mcclements D J. Formulation of more efficacious curcumin delivery systems using colloid science: Enhanced solubility, stability, and bioavailability[J]. Molecules, 2020, 25 (12) : 2791.
doi: 10.3390/molecules25122791 |
[3] | Ma D, Tu Z, Wang H, et al. Microgel-in-microgel biopolymer delivery systems: Controlled digestion of encapsulated lipid droplets under simulated gastrointestinal conditions[J]. Journal of Agricultural & Food Chemistry, 2018, 66 (15) : 3930-3938. |
[4] | Torres O, Murray B, Sarkar A. Emulsion microgel particles: Novel encapsulation strategy for lipophilic molecules[J]. Trends in Food Science & Technology, 2016, 55 (9) : 98-108. |
[5] |
Saunders B R, Vincent B. Microgel particles as model colloids: Theory, properties and applications[J]. Advances in Colloid and Interface Science, 1999, 80 (1) : 1-25.
doi: 10.1016/S0001-8686(98)00071-2 |
[6] |
Saxena S, Hansen C E, Lyon L A. Microgel mechanics in biomaterial design[J]. Accounts of Chemical Research, 2014, 47 (8) : 2426.
doi: 10.1021/ar500131v pmid: 24873478 |
[7] |
Ching S H, Bansal N, Bhandari B. Alginate gel particles: a review of production techniques and physical properties[J]. Critical Reviews in Food Science and Nutrition, 2015, 57 (6) : 1133-1152.
doi: 10.1080/10408398.2014.965773 |
[8] |
Wang M, Doi T, McClements D J. Encapsulation and controlled release of hydrophobic flavors using biopolymer-based microgel delivery systems: Sustained release of garlic flavor during simulated cooking[J]. Food Research International, 2019, 119 (5) : 6-14.
doi: 10.1016/j.foodres.2019.01.042 |
[9] |
Dingenouts N, Norhausen C, Ballauff M. Observation of the volume transition in thermosensitive coreshell latex particles by small-angle X-ray scattering[J]. Macromolecules, 1998, 31 (25) : 8912-8917.
doi: 10.1021/ma980985t |
[10] | Yu L, Sun Q, Hui Y, et al. Microfluidic formation of core-shell alginate microparticles for protein encapsulation and controlled release[J]. Journal of Colloid and Interface Science, 2018, 15 (539) : 497-503. |
[11] | Mahattanadul N, Sunintaboon P. Chitosan-functionalised poly (2-hydroxyethyl methacrylate) core-shell microgels as drug delivery carriers: salicylic acid loading and release[J]. Journal of Microencapsulation Microcapsules Liposomes Nanoparticles Microcells Microspheres, 2016, 33 (6) : 563-568. |
[12] |
Eral H B, López-Mejías V. Biocompatible alginate microgel particles as heteronucleants and encapsulating vehicles for hydrophilic and hydrophobic drugs[J]. Crystal Growth & Design, 2014, 14 (4) : 2073-2082.
doi: 10.1021/cg500250e |
[13] |
Zhang Z, Zhang R, Zou L, et al. Protein encapsulation in alginate hydrogel beads: Effect of pH on microgel stability, protein retention and protein release[J]. Food Hydrocolloids, 2016, 58 (7) : 308-315.
doi: 10.1016/j.foodhyd.2016.03.015 |
[14] | Zhang H, Gao M. An improved pH-responsive carrier based on EDTA-Ca-alginate for oral delivery of lactobacillus rhamnosus ATCC 53103[J]. Carbohydrate Polymers Scientific & Technological Aspects of Industrially Important Polysaccharides, 2017, 155 (2) : 329-335. |
[15] |
Koshani R, Tavakolian M, Ven T. Cellulose-based dispersants and flocculants[J]. Journal of Materials Chemistry B, 2020, 8 (10) : 10502-10526.
doi: 10.1039/D0TB02021D |
[16] | Yu Y L, Zhang M J. Thermo-responsive monodisperse core-shell microspheres with PNIPAM core and biocompatible porous ethyl cellulose shell embedded with PNIPAM gates[J]. Journal of Colloid & Interface Science, 2012, 376 (1) : 97-106. |
[17] |
Ma Z, Song Z. Novel method for microencapsulation of oxalic acid with ethyl cellulose shell for sustained-release performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602 (5) : 125064.
doi: 10.1016/j.colsurfa.2020.125064 |
[18] |
Nouri A, Dizaji B F. Simultaneous linear release of folic acid and doxorubicin from ethyl cellulose/chitosan/g‐C3N4/MoS2 core‐shell nanofibers and its anticancer properties[J]. Journal of Biomedical Materials Research Part A, 2020, 109 (6) : 903-914.
doi: 10.1002/jbm.a.37081 |
[19] |
Sun Y, Ding J. High ethanol tolerance of oil-in-water Pickering emulsions stabilized by protein nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 632 (2) : 127777.
doi: 10.1016/j.colsurfa.2021.127777 |
[20] | Zhao F, Qin X, Feng S. Preparation of microgel/sodium alginate composite granular hydrogels and their Cu2+ adsorption properties[J]. RSC Advances, 2016 (6) : 100511-100518. |
[21] |
Gan T, Zhang Y, Guan Y. In situ gelation of P(NIPAM-HEMA) microgel dispersion and its applications as injectable 3D cell scaffold[J]. Biomacromolecules, 2009, 10 (6) : 1410-1415.
doi: 10.1021/bm900022m pmid: 19366198 |
[22] |
Wen Z S, Xiang X W. Composition and anti-inflammatory effect of polysaccharides from Sargassum horneri in RAW264.7 macrophages[J]. International Journal of Biological Macromolecules, 2016, 88 (7) : 403-413.
doi: 10.1016/j.ijbiomac.2016.02.025 |
[23] |
Chen W, Palazzo A. Effect of particle size on drug loading and release kinetics of gefitinib-loaded PLGA microspheres[J]. Molecular Pharmaceutics, 2017, 14 (2) : 459-467.
doi: 10.1021/acs.molpharmaceut.6b00896 pmid: 27973854 |
[24] |
Hao L, Lin G. Phosphorylated zein as biodegradable and aqueous nanocarriers for pesticides with sustained-release and anti-UV properties[J]. Journal of Agricultural and Food Chemistry, 2019, 67 (36) : 9989-9999.
doi: 10.1021/acs.jafc.9b03060 pmid: 31430135 |
[25] |
Lawrie G, Keen I. Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS[J]. Biomacromolecules, 2007, 8 (8) : 2533-2541.
pmid: 17591747 |
[26] |
Khichar K K, Dangi S B. Structural, optical, and surface morphological studies of ethyl cellulose/graphene oxide nanocomposites[J]. Polymer Composites, 2020, 41 (7) : 2792-2802.
doi: 10.1002/pc.25576 |
[27] |
Kulig D, Zimoch-Korzycka A. Study on alginate-chitosan complex formed with different polymers ratio[J]. Polymers, 2016, 8 (5) : 167.
doi: 10.3390/polym8050167 |
[28] |
Ghauri Z H, Islam A. Novel pH-responsive chitosan/sodium alginate/PEG based hydrogels for release of sodium ceftriaxone[J]. Materials Chemistry and Physics, 2021, 277 (1) : 125456.
doi: 10.1016/j.matchemphys.2021.125456 |
[29] |
Jing H, Huang X. Facile synthesis of pH-responsive sodium alginate/carboxymethyl chitosan hydrogel beads promoted by hydrogen bond[J]. Carbohydrate Polymers, 2022, 278 (15) : 118993.
doi: 10.1016/j.carbpol.2021.118993 |
[30] | Jung J, Li L. Amphiphilic quaternary ammonium chitosan/sodium alginate multilayer coatings kill fungal cells and inhibit fungal biofilm on dental biomaterials[J]. Materials Science & Engineering, 2019, 104 (12) : 109961. |
[31] |
Niu Y, Yang T. Preparation and characterization of pH-responsive sodium alginate/humic acid/konjac hydrogel for L-ascorbic acid controlled release[J]. Materials Express, 2019, 9 (6) : 563-569.
doi: 10.1166/mex.2019.1537 |
[32] | Akila M, Sushama A, Ramanathan K. Study on in vitro cytotoxicity of papain against liver cancer cell line hep g2[J]. International Journal of Pharmacy & Pharmaceutical Sciences, 2014, 6 (9) : 160-161. |
[33] |
Kang M, Hong S K. Chitosan microgel: Effect of cross-linking density on pH-dependent release[J]. Korean Journal of Chemical Engineering, 2011, 29 (1) : 72-76.
doi: 10.1007/s11814-011-0138-x |
[34] |
Feng R, Wang L. Development of the pH responsive chitosan-alginate based microgel for encapsulation of Jughans regia L. polyphenols under simulated gastrointestinal digestion in vitro[J]. Carbohydrate Polymers, 2020, 250 (15) : 116917.
doi: 10.1016/j.carbpol.2020.116917 |
[35] |
Hariyadi D M, Lin C Y. Diffusion loading and drug delivery characteristics of alginate gel microparticles produced by a novel impinging aerosols method[J]. Journal of Drug Targeting, 2010, 18 (10) : 831-841.
doi: 10.3109/1061186X.2010.525651 pmid: 20958098 |
[1] | 胡可云. Fe3O4基核壳纳米结构材料的制备及顺磁性研究[J]. 日用化学工业(中英文), 2024, 54(3): 298-304. |
[2] | 郝林聪, 夏鑫. 薰衣草精油微胶囊研究进展及其在纺织上的应用[J]. 日用化学工业(中英文), 2023, 53(4): 453-458. |
[3] | 吕雅文,王静雯,叶志晟,尚亚卓,刘洪来. P/O/LC/W多重乳状液的制备及性能研究[J]. 日用化学工业(中英文), 2023, 53(2): 121-132. |
[4] | 康万利,王康辉,李哲,吕伟,杨红斌,贾茹雪,何瑛琦. 低渗透油藏缓释型表面活性剂纳米载体研究[J]. 日用化学工业(中英文), 2022, 52(11): 1147-1154. |
[5] | 史丽燕,杨明珠,宋冰蕾,崔正刚. 一种丁香酚表面活性剂的合成及纳米微球的制备[J]. 日用化学工业, 2020, 50(6): 373-378. |
[6] | 余林林,谢星辉,石小迪,李雪婷,鲁希华. 薰衣草纳米胶囊的制备、研究及应用[J]. 日用化学工业, 2019, 49(8): 519-525. |
[7] | 喻明英,王靖,杨成,曹光群. Pickering乳液在化妆品中的应用研究进展[J]. 日用化学工业, 2019, 49(6): 398-402. |
[8] | 陈伟才,易丹,李淑钰,张利萍,蒋庆. 口腔长效抑菌缓释剂的制备与研究[J]. 日用化学工业, 2018, 48(8): 457-461. |
[9] | 王久标, 储 鸿. 抗紫外聚多巴胺香料纳米胶囊缓释体系的研究[J]. 日用化学工业, 2018, 48(10): 582-588. |
[10] | 苏忠毅, 裴广玲. 负载玫瑰香精多孔微球的制备及缓释性能研究[J]. 日用化学工业, 2015, 45(1): 36-40. |
[11] | 许东颖, 王婴, 孟巨光, 林韶彬. pH敏感魔芋葡甘聚糖复合凝胶的制备及其缓释性能研究[J]. 日用化学工业, 2014, 44(11): 631-634. |
|