日用化学工业(中英文) ›› 2023, Vol. 53 ›› Issue (8): 915-924.doi: 10.3969/j.issn.2097-2806.2023.08.008
牛奇奇1,吕其超1,*(),董朝霞1,2,*(
),张风帆1,王洪勃1
收稿日期:
2023-03-17
修回日期:
2023-07-26
出版日期:
2023-08-22
发布日期:
2023-08-28
通讯作者:
吕其超,董朝霞
基金资助:
Niu Qiqi1,Lv Qichao1,*(),Dong Zhaoxia1,2,*(
),Zhang Fengfan1,Wang Hongbo1
Received:
2023-03-17
Revised:
2023-07-26
Online:
2023-08-22
Published:
2023-08-28
Contact:
Qichao Lv,Zhaoxia Dong
摘要:
表面活性剂微观结构可以直接影响其宏观性能,如泡沫性能、乳化性能、润湿性能等。近年来蠕虫胶束因其优异的流变性质而在油田增产、个人护理、纳米材料等领域有广泛的应用,通过引入蠕虫胶束可以更好地调控泡沫性能。文章首先简述了表面活性剂的类型及其基本性质,着重论述了蠕虫胶束的构筑方式,并对蠕虫胶束稳定的泡沫及机理进行了总结,最后聚焦于增强型蠕虫胶束的研究进展,例如聚合物-蠕虫胶束复合体系、纳米颗粒-蠕虫胶束复合体系等,同时为纳米颗粒-蠕虫胶束协同稳定泡沫体系的发展提出了一些建议。
中图分类号:
牛奇奇,吕其超,董朝霞,张风帆,王洪勃. 含蠕虫胶束的泡沫体系的性能研究进展[J]. 日用化学工业(中英文), 2023, 53(8): 915-924.
Niu Qiqi,Lv Qichao,Dong Zhaoxia,Zhang Fengfan,Wang Hongbo. Research progress on the properties of foam systems containing wormlike micelles[J]. China Surfactant Detergent & Cosmetics, 2023, 53(8): 915-924.
表1
常用的泡沫性能测量方法"
方法 | 主要装置 | 原理 |
---|---|---|
振荡法 | 带有刻度的具塞量筒 | 在量筒中盛有一定体积的试液,上下振荡一定次数,通过不断振荡产生泡沫 |
搅动法 | 量杯、刻度量筒 | 事先在刻度量筒中盛有一定体积的试液,用搅拌器或者搅拌棒以恒定速度搅动液体,从而产生大量泡沫 |
电导率法 | 电极板、信号转换器 | 形成泡沫后利用电导率的差异可以得到试液的起泡性。可以在不同泡沫高度处放置电极,从而可以实时监测泡沫的含液量以及衰减过程[ |
倾倒法 | 带有刻度的夹套量筒、分液漏斗 | 在刻度量筒内放置一定体积的试液,分液漏斗内也盛有一定体积的试液,打开分液漏斗的旋塞,试液自一定高度落下,冲击量筒内液体产生泡沫[ |
气流法 | 刻度量筒、玻璃滤板 | 气体从刻度量筒底部注入然后通过特殊孔径的玻璃滤板,玻璃滤板上面有一定体积的液体,持续通气使气体分散于液体中形成大量的泡沫[ |
光学法 | 泡沫发生装置、光学检测器、信号转换器 | 光源经过光学处理后形成特定波长的光线,透过泡沫发生装置,在检测器处进行光电信号转换,电流大小可以反映泡沫高度的变化[ |
[1] | Zhao Guoxi, Zhu Buyao. Principle of surfactant action[M]. Beijing: China Light Industry Press, 2003: 535-547. |
[2] |
Bolisetty S, Peydayesh M, Mezzenga R. Sustainable technologies for water purification from heavy metals: review and analysis[J]. Chemical Society Reviews, 2019, 48: 463-487.
doi: 10.1039/c8cs00493e pmid: 30603760 |
[3] | Vinogradov A V, Kuprin D S, Abduragimov I M, et al. Silica foams for fire prevention and firefighting[J]. ACS Applied Materials & Interfaces, 2016, 8 (1) : 294-301. |
[4] |
Dickinson E. Food emulsions and foams: stabilization by particles[J]. Current Opinion in Colloid & Interface Science, 2010, 15 (1/2): 40-49.
doi: 10.1016/j.cocis.2009.11.001 |
[5] | Simjoo M, Rezaei T, Andrianov A, et al. Foam stability in the presence of oil: effect of surfactant concentration and oil type[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2013, 438: 148-158. |
[6] |
Boos J, Drenckhan W, Stubenrauch C. Protocol for studying aqueous foams stabilized by surfactant mixtures[J]. Journal of Surfactants and Detergents, 2013, 16 (1) : 1-12.
doi: 10.1007/s11743-012-1416-2 |
[7] | Koolivand-Salooki A, Javadi A, Bahramian A, et al. Dynamic interfacial properties and foamability of polyelectrolyte-surfactant mixtures[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2019, 562: 345-353. |
[8] |
Garrett P R. Defoaming: antifoams and mechanical methods[J]. Current Opinion in Colloid & Interface Science, 2015, 20: 81-91.
doi: 10.1016/j.cocis.2015.03.007 |
[9] |
Cheng Y, Yang Y, Niu C, et al. Progress in synthesis and application of zwitterionic Gemini surfactants[J]. Frontiers of Materials Science, 2019, 13: 242-257.
doi: 10.1007/s11706-019-0473-0 |
[10] |
Bisoyi H K, Kumar S. Liquid-crystal nanoscience: an emerging avenue of soft self-assembly[J]. Chemical Society Reviews, 2011, 40: 306-319.
doi: 10.1039/b901793n pmid: 21125105 |
[11] |
Kiriya D, Chen K, Ota H, et al. Design of surfactant-substrate interactions for roll-to-roll assembly of carbon nanotubes for thin-film transistors[J]. Journal of the American Chemical Society, 2014, 136 (31) : 11188-11194.
doi: 10.1021/ja506315j pmid: 25019509 |
[12] |
Pinazo A, Pons R, Pérez L, et al. Amino acids as raw material for biocompatible surfactants[J]. Industrial & Engineering Chemistry Research, 2011, 50 (9) : 4805-4817.
doi: 10.1021/ie1014348 |
[13] | Rosen M J. Surfactants and interfacial phenomena[M]. New York: John Wiley & Sons, Inc., 2004: 6-30. |
[14] | Nitschke M, Costa S. Biosurfactants in food industry[J]. Trends in Food Science & Technology, 2007, 18: 252-259. |
[15] |
Gharaei-Fathabad E. Biosurfactants in pharmaceutical industry: A mini-review[J]. American Journal of Drug Discovery and Development, 2011, 1: 58-69.
doi: 10.3923/ajdd.2011.58.69 |
[16] |
Sachdev D P, Cameotra S S. Biosurfactants in agriculture[J]. Applied Microbiology and Biotechnology, 2013, 97: 1005-1016.
doi: 10.1007/s00253-012-4641-8 pmid: 23280539 |
[17] |
Lourith N, Kanlayavattanakul M. Natural surfactants used in cosmetics: Glycolipids[J]. International Journal of Cosmetic Science, 2009, 31: 255-261.
doi: 10.1111/j.1468-2494.2009.00493.x pmid: 19496839 |
[18] |
Friberg S E, Solans C. Surfactant association structures and the stability of emulsions and foams[J]. Langmuir, 1986, 2: 121-126.
doi: 10.1021/la00068a001 |
[19] |
Dickinson E. Structuring of colloidal particles at interfaces and the relationship to food emulsion and foam stability[J]. Journal of Colloid and Interface Science, 2015, 449: 38-45.
doi: 10.1016/j.jcis.2014.09.080 pmid: 25446956 |
[20] |
Lunkenheimer K, Malysa K, Winsel K, et al. Novel method and parameters for testing and characterization of foam stability[J]. Langmuir, 2010, 26 (6) : 3883-3888.
doi: 10.1021/la9035002 pmid: 19925009 |
[21] |
Varade D, Carriere D, Arriaga L R, et al. On the origin of the stability of foams made from catanionic surfactant mixtures[J]. Soft Matter, 2011, 7: 6557-6570.
doi: 10.1039/c1sm05374d |
[22] |
Curschellas C, Kohlbrecher J, Geue T, et al. Foams stabilized by multilamellar polyglycerol ester self-assemblies[J]. Langmuir, 2013, 29 (1) : 38-49.
doi: 10.1021/la3029116 pmid: 23214931 |
[23] |
Ferreira J, Mikhailovskaya A, Chenneviere A, et al. Interplay between bulk self-assembly, interfacial and foaming properties in a catanionic surfactant mixture of varying composition[J]. Soft Matter, 2017, 13 (39) : 7197-7206.
doi: 10.1039/c7sm01601h pmid: 28930353 |
[24] | Chen Z L, Yan Y L, Huang X B. Stabilization of foams solely with polyoxyethylene-type nonionic surfactant[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2008, 331 (3) : 239-244. |
[25] | Yan Yongli, He Fei, Zhang Jiaming, et al. Stability of colloidal gas aphrons prepared solely by nonionic surfactant[J]. Chemical Journal of Chinese Universities, 2008, 10: 2044-2048. |
[26] |
Zhang Q, He C, Zhang D, et al. Research on viscoelastic properties of SLG-LHSB system: Effects of pH and concentration on micelles in the system[J]. Journal of Molecular Liquids, 2022, 367: 120593.
doi: 10.1016/j.molliq.2022.120593 |
[27] |
Basheva E S, Danov K D, Radulova G M, et al. Properties of the micelles of sulfonated methyl esters determined from the stepwise thinning of foam films and by rheological measurements[J]. Journal of Colloid and Interface Science, 2019, 538: 660-670.
doi: S0021-9797(18)31468-1 pmid: 30572230 |
[28] |
Jiang N, Sheng Y, Li C, et al. Surface activity, foam properties and aggregation behavior of mixtures of short-chain fluorocarbon and hydrocarbon surfactants[J]. Journal of Molecular Liquids, 2018, 268: 249-255.
doi: 10.1016/j.molliq.2018.07.055 |
[29] |
Suja V C, Kannan A, Kubicka B A, et al. Bubble coalescence at wormlike micellar solution-air interfaces[J]. Langmuir, 2020, 36 (40) : 11836-11844.
doi: 10.1021/acs.langmuir.0c01861 |
[30] |
Pandya N, Rajput G, Janni D, et al. SLES/CMEA mixed surfactant system: Effect of electrolyte on interfacial behavior and microstructures in aqueous media[J]. Journal of Molecular Liquids, 2021, 325: 115096.
doi: 10.1016/j.molliq.2020.115096 |
[31] |
Xue Z, Worthen A J, Da C, et al. Ultradry carbon dioxide-in-water foams with viscoelastic aqueous phases[J]. Langmuir, 2016, 32 (1) : 28-37.
doi: 10.1021/acs.langmuir.5b03036 pmid: 26666311 |
[32] |
Sun L, Chen D, Zhang Y, et al. Probing high-salinity-enhanced stability of betaine foam for foam application in harsh reservoirs[J]. Fuel, 2022, 327: 125144.
doi: 10.1016/j.fuel.2022.125144 |
[33] |
Manyala D L, Varade D. Formation and characterization of microemulsion with novel anionic sodium N-lauroylsarcosinate for personal care[J]. Journal of Molecular Liquids, 2021, 343: 117657.
doi: 10.1016/j.molliq.2021.117657 |
[34] |
Zhang H, Xi H, Lin X, et al. Biodegradable antifreeze foam stabilized by lauryl alcohol for radioactive surface decontamination[J]. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331: 3135-3145.
doi: 10.1007/s10967-022-08349-3 |
[35] | Mitrinova Z, Tcholakova S, Denkov N. Control of surfactant solution rheology using medium-chain cosurfactants[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2017, 537: 173-184. |
[36] |
Chen S, Leung F, Stuart M, et al. Dynamic assemblies of molecular motor amphiphiles control macroscopic foam properties[J]. Journal of the American Chemical Society, 2020, 142 (22) : 10163-10172.
doi: 10.1021/jacs.0c03153 pmid: 32379449 |
[37] |
Wang J, Liang M, Tian Q, et al. CO2-switchable foams stabilized by a long-chain viscoelastic surfactant[J]. Journal of Colloid and Interface Science, 2018, 523: 65-74.
doi: S0021-9797(18)30346-1 pmid: 29609125 |
[38] |
Li D, Ren S, Zhang P, et al. CO2-sensitive and self-enhanced foams for mobility control during CO2 injection for improved oil recovery and geo-storage[J]. Chemical Engineering Research and Design, 2017, 120: 113-120.
doi: 10.1016/j.cherd.2017.02.010 |
[39] |
Jia W, Xian C, Wu J. Temperature-sensitive foaming agent developed for smart foam drainage technology[J]. RSC Advances, 2022, 12: 23447-23453.
doi: 10.1039/d2ra04034d pmid: 36090426 |
[40] |
Chen C, Liao Y, Lu F, et al. Facile synthesis, surface activity, wettability and ultrahigh foaming properties of novel nonionic Gemini fluorocarbon surfactants[J]. Journal of Molecular Liquids, 2020, 302: 112469.
doi: 10.1016/j.molliq.2020.112469 |
[41] | Niu Q, Dong Z, Lv Q, et al. Role of interfacial and bulk properties of long-chain viscoelastic surfactant in stabilization mechanism of CO2 foam for CCUS[J]. Journal of CO2 Utilization, 2022, 66: 102297. |
[42] |
Shashkina J A, Philippova O E, Zaroslov Y D, et al. Rheology of viscoelastic solutions of cationic surfactant: Effect of added associating polymer[J]. Langmuir, 2005, 21 (4) : 1524-1530.
pmid: 15697303 |
[43] |
Wei Y, Han Y, Zhou H, et al. Investigation on the interaction between hydrophobically modified polyacrylic acid and wormlike micelles under shear[J]. Journal of Solution Chemistry, 2015, 44: 1177-1190.
doi: 10.1007/s10953-015-0332-2 |
[44] |
Li X, Sarsenbekuly B, Yang H, et al. Rheological behavior of a wormlike micelle and an amphiphilic polymer combination for enhanced oil recovery[J]. Physics of Fluids, 2020, 32 (7) : 73105.
doi: 10.1063/5.0018211 |
[45] | Zhu J, Yang Z, Li X, et al. Experimental study on the microscopic characteristics of foams stabilized by viscoelastic surfactant and nanoparticles[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2019, 572: 88-96. |
[46] |
Fei Y, Zhu J, Xu B, et al. Experimental investigation of nanotechnology on worm-like micelles for high-temperature foam stimulation[J]. Journal of Industrial and Engineering Chemistry, 2017, 50: 190-198.
doi: 10.1016/j.jiec.2017.02.015 |
[47] | Qin W, Yue L, Jia S, et al. Effect of carbon nanotubes on rheological properties of wormlike micelle solution[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2016, 32 (5) : 1068-1074. |
[48] |
Yang Y, Zhang H, Wang H, et al. Pseudo-interpenetrating network viscoelastic surfactant fracturing fluid formed by surface-modified cellulose nanofibril and wormlike micelles[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109608.
doi: 10.1016/j.petrol.2021.109608 |
[49] |
Zhao M, Liu S, Wu Y, et al. Study on a two-dimensional nanomaterial reinforced wormlike micellar system[J]. Journal of Molecular Liquids, 2022, 346: 118236.
doi: 10.1016/j.molliq.2021.118236 |
[50] | Sun X, Li H. Carbon quantum dot-doped worm-like micelles[J]. China Surfactant Detergent & Cosmetics, 2018, 48 (9) : 483-488. |
[1] | 张婉萍, 林延忠, 张倩洁, 张冬梅, 蒋汶. Ca2+介导的月桂酰甲基牛磺酸钠相行为研究[J]. 日用化学工业(中英文), 2024, 54(1): 32-37. |
[2] | 周媛, 杨秀全, 张军, 白亮, 吴志宇. 不同酯化度烷基糖苷磺基琥珀酸酯盐的合成与性能[J]. 日用化学工业(中英文), 2023, 53(7): 765-772. |
[3] | 喻冬秀,金相新,刘嘉欣,李俊朗. 纳米银对椰油酰基谷氨酸三乙醇胺盐表面活性的影响[J]. 日用化学工业, 2022, 52(4): 363-369. |
[4] | 郭华,徐进,何云平,许虎君. 椰油酰水解燕麦蛋白钾对氨基酸洁面膏的性能影响[J]. 日用化学工业(中英文), 2022, 52(12): 1307-1313. |
[5] | 刘佳佳,许虎君. 脂肪酰胺丙基磷酸酯甜菜碱的合成和性能研究[J]. 日用化学工业, 2020, 50(7): 446-451. |
[6] | 李珩,蒋佳洹,钟颖新,徐朝华,郑晓瑞. 含陈皮提取物的氨基酸皂的制备及性能研究[J]. 日用化学工业, 2020, 50(6): 408-412. |
[7] | 刘腾,郑元林,葛纪者,杨伟栋,张朝忠. 脂肪酶对水基油墨清洗剂洗涤能力的影响研究[J]. 日用化学工业, 2020, 50(2): 107-111. |
[8] | 周媛,杨秀全,张军. 烷基糖苷磺基琥珀酸酯盐与烷基糖苷的复配性能和相行为[J]. 日用化学工业, 2020, 50(1): 20-25. |
[9] | 赖小娟,刘 佩,田 伟,汪 洁,惠艳妮,贾友亮. 连结基对甜菜碱型双子表面活性剂表面活性和泡沫性能的影响[J]. 日用化学工业, 2018, 48(10): 558-563. |
[10] | 汤小芹, 陈明华, 李芳芳, 任天辉. 椰油酰基甘氨酸钾部分酸化对洁面膏性能的影响[J]. 日用化学工业, 2017, 47(7): 403-407. |
[11] | 邹新源,罗文利,马德胜,周新宇,田茂章. 泡沫复合驱用癸基糖苷磺酸盐的合成及性能研究[J]. 日用化学工业, 2016, 46(6): 320-323. |
[12] | 武文涛,张永民,刘雪锋. 叔胺基CO2开关表面活性剂的合成及性能研究[J]. 日用化学工业, 2016, 46(5): 251-256. |
[13] | 任龙芳,孙燕情,雷森. 硫酸化妥尔油表面活性剂的合成及其泡沫性能研究[J]. 日用化学工业, 2016, 46(10): 561-564. |
[14] | 白亮, 杨秀全, 张军, 周媛. 醇醚糖苷柠檬酸单酯二钠盐的合成及性能研究[J]. 日用化学工业, 2014, 44(8): 432-435. |
[15] | 刘媛飞, 胡俊, 赵莉, 徐宝财, 韩富. 表面活性剂的性能与应用(Ⅺ)——表面活性剂的泡沫作用及其应用[J]. 日用化学工业, 2014, 44(11): 605-610. |
|