[1] |
Hogue C. How to say goodbye to PFAS[J]. Chemical & Engineering News, 2019, 97(46).
|
[2] |
Hogue C. US Congress set to pass handful of PFAS controls[J]. Chemical & Engineering News, 2019, 97(48).
|
[3] |
Xing Hang, Jia Xuhong, Xiao Jinxin. Fluorinated surfactants and fluoropolymers (IV): Strategy for PFOS problems[J]. China Surfactant Detergent & Cosmetics, 2016, 46(4) : 189-194.
|
[4] |
Bomgardner M M. Allonia launches to destroy pollution with microbes[J]. Chemical & Engineering News, 2020, 98(42).
|
[5] |
Luo Yuran. Experimental data of chemical bond energies [M]. Beijing: Science Press, 2005: 130.
|
[6] |
Krafft M P, Riess J G. Per- and polyfluorinated substances (PFASs): Environmental challenges[J]. Current Opinion in Colloid & Interface Science, 2015, 20:192-212.
doi: 10.1016/j.cocis.2015.07.004
|
[7] |
Giesy J P, Kannan K. Global distribution of perfluorooctane sulfonate in wildlife[J]. Environ. Sci. Technol., 2001, 35(7) : 1339-1342.
pmid: 11348064
|
[8] |
Shi Y, Pan Y, Yang R, et al. Occurrence of perfluorinated compounds in fish from Qinghai·Tibetan Plateau[J]. Environment International, 2010, 36(1) : 46-50.
doi: 10.1016/j.envint.2009.09.005
|
[9] |
Frömel T, Knepper T P. Biodegradation of fluorinated alkyl substances[M]//Whitacre D M, Devoogt P. Rev Environ Contam Toxicol. New York: Springer, 2010, 208:161-177.
|
[10] |
Young C J, Mabury S A. Atmospheric perfluorinated acid precursors: Chemistry, occurrence, and impacts[J]. Rev. Environ. Contam. Toxicol., 2010, 208:1-109.
doi: 10.1007/978-1-4419-6880-7_1
pmid: 20811862
|
[11] |
Xing Hang, Chen Xiantao, Xiao Jinxin. Fluorinated surfactants and fluoropolymers (Ⅱ): Environmental and safety issues[J]. China Surfactant Detergent & Cosmetics, 2016, 46(2) : 66-74.
|
[12] |
Bardi L, Mattei A, Steffan S, et al. Hydrocarbon degradation by a soil microbial population with β-cyclodextrin as surfactant to enhance bioavailability[J]. Enzyme. Microb. Technol., 2000, 27:709-713.
doi: 10.1016/S0141-0229(00)00275-1
|
[13] |
Shaw D M J, Munoz G, Bottos E M, et al. Degradation and defluorination of 6: 2 fluorotelomer sulfonamidoalkyl betaine and 6: 2 fluorotelomer sulfonate by Gordonia sp. strain NB4-1Y under sulfur-limiting conditions[J]. Science of Total Environment, 2019, 647:690-698.
doi: 10.1016/j.scitotenv.2018.08.012
|
[14] |
Wang N, Szostek B, Buck R C, et al. 8-2 fluorotelomer alcohol aerobic soil biodegradation: pathways, metabolites, and metabolite yields[J]. Chemosphere, 2009, 75:1089-1096.
doi: 10.1016/j.chemosphere.2009.01.033
|
[15] |
Liu J X, Wang N, Szostek B, et al. 6-2 fluorotelomer alcohol aerobic biodegradation in soil and mixed bacterial culture[J]. Chemosphere, 2010, 78:437-444.
doi: 10.1016/j.chemosphere.2009.10.044
|
[16] |
Wang N, Buck R C, Szostek B, et al. 5: 3 polyfluorinated acid aerobic biotransformation in activated sludge via novel “one-carbon removal pathways”[J]. Chemosphere, 2012, 87:527-534.
doi: 10.1016/j.chemosphere.2011.12.056
|
[17] |
Huang S, Jaffé P R. Defluorination of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) by Acidimcrobium sp. strain A6[J]. Environ. Sci. Technol., 2019, 53(19) : 11410-11419.
doi: 10.1021/acs.est.9b04047
pmid: 31529965
|
[18] |
Princeton University, Engineering School. Microbe chews through PFAS and other tough contaminants [N]. Science Daily, 2019-9-18. https://www.sciencedaily.com/releases/2019/09/190918083218.htm
|
[19] |
Pelley J. Wetland microbe detoxifies PFAS contaminants[J]. Chemical & Engineering News, 2019, 97(38).
|