[1] |
Krutmann J, Passeron T, Gilaberte Y, et al. Photoprotection of the future: Challenges and opportunities[J]. Journal of the European Academy of Dermatology and Venereology, 2020, 34 (3) : 447-454.
doi: 10.1111/jdv.16030
pmid: 31898355
|
[2] |
Passeron T, Lim H W, Goh C L, et al. Photoprotection according to skin phototype and dermatoses: Practical recommendations from an expert panel[J]. Journal of the European Academy of Dermatology and Venereology, 2021, 35 (7) : 1460-1469.
|
[3] |
唐梦琪, 张晓璇, 吴炜鑫, 等. 木质素基抗紫外线防护材料的应用研究进展[J]. 中国造纸学报, 2023, 38 (1) : 99-107.
|
[4] |
Gordobil O, Olaizola P, Banales J M, et al. Lignins from agroindustrial by-products as natural ingredients for cosmetics: Chemical structure and in vitro sunscreen and cytotoxic activities[J]. Molecules, 2020, 25 (5) : 1131.
|
[5] |
Mondal S, Jatrana A, Maan S, et al. Lignin modification and valorization in medicine, cosmetics, environmental remediation and agriculture: A review[J]. Environmental Chemistry Letters, 2023, 21: 2171-2197.
|
[6] |
Gutiérrez-Hernández J M, Escalante A, Murillo-Vázquez R N, et al. Use of agave tequilana-lignin and zinc oxide nanoparticles for skin photoprotection[J]. Journal of Photochemistry and Photobiology B: Biology, 2016, 163: 156-161.
|
[7] |
Wang H, Qiu X, Liu W, et al. A novel lignin/ZnO hybrid nanocomposite with excellent UV-absorption ability and its application in transparent polyurethane coating[J]. Industrial & Engineering Chemistry Research, 2017, 56 (39) : 11133-11141.
|
[8] |
Bragaglia M, Cherubini V, Nanni F. PEEK-TiO2 composites with enhanced UV resistance[J]. Composites Science and Technology, 2020, 199: 108365.
|
[9] |
Król A, Pomastowski P, Rafińska K, et al. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism[J]. Advances in Colloid and Interface Science, 2017, 249: 37-52.
doi: S0001-8686(17)30119-7
pmid: 28923702
|
[10] |
Naess E M, Hofgaard A, Skaug V, et al. Titanium dioxide nanoparticles in sunscreen penetrate the skin into viable layers of the epidermis: A clinical approach[J]. Photodermatology, Photoimmunology & Photomedicine, 2015, 32 (1) : 48-51.
|
[11] |
刘杰, 吴凤芹, 姚超, 等. TiO2/ZnO/凹土复合材料的制备表征及紫外线屏蔽性能的研究[J]. 化工新型材料, 2016, 44 (4) : 119-121.
|
[12] |
Grant R H, Heisler G M, Gao W, et al. Ultraviolet leaf reflectance of common urban trees and the prediction of reflectance from leaf surface characteristics[J]. Agricultural and Forest Meteorology, 2003, 120(1-4) : 127-139.
|
[13] |
Yoshimura H, Zhu H, Wu Y, et al. Spectral properties of plant leaves pertaining to urban landscape design of broad-spectrum solar ultraviolet radiation reduction[J]. International Journal of Biometeorology, 2009, 54 (2) : 179-191.
|
[14] |
Zhao Y, Troedsson C, Bouquet J M, et al. Mechanically reinforced, flexible, hydrophobic and UV impermeable starch-cellulose nanofibers (cnf)-lignin composites with good barrier and thermal properties[J]. Polymers, 2021, 13 (24) : 4346.
|
[15] |
Li X Z, Zhu W, Lu X, et al. Integrated nanostructures of CeO2/attapulgite/g-C3N4 as efficient catalyst for photocatalytic desulfurization: Mechanism, kinetics and influencing factors[J]. Chemical Engineering Journal, 2017, 326: 87-98.
|
[16] |
Zhu L, Guo J, Liu P, et al. Novel strategy for palygorskite/poly (acrylic acid) nanocomposite hydrogels from bi-functionalized palygorskite nanorods as easily separable adsorbent for cationic basic dye[J]. Applied Clay Science, 2016, 121: 29-35.
|
[17] |
Chang H, Su Y, Chang S. Studies on photostability of butyrylated, milled wood lignin using spectroscopic analyses[J]. Polymer Degradation and Stability, 2006, 91 (4) : 816-822.
|
[18] |
Freitas G, Duncke A C, Barbato C N, et al. Influence of wax chemical structure on W/O emulsion rheology and stability[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 558: 45-56.
|
[19] |
周文瑞, 贺建彪, 焦倩, 等. O/W乳化体系化妆品感官评价与仪器分析相关性研究进展[J]. 日用化学工业(中英文), 2024, 54 (3) : 344-352.
|
[20] |
卢烁, 杨东杰, 李圆圆, 等. 季铵化木质素与纳米二氧化钛协同稳定的双重pH响应性pickering乳液[J]. 高分子学报, 2019, 50 (2) : 160-169.
|