China Surfactant Detergent & Cosmetics ›› 2025, Vol. 55 ›› Issue (8): 961-968.doi: 10.3969/j.issn.2097-2806.2025.08.002
• Invited paper • Previous Articles Next Articles
Yanping Chu1,2,Feng Gao1,2,Weihua Zhang3,Lei Zhang4,Lu Zhang4,*()
Received:
2025-06-06
Revised:
2025-07-11
Online:
2025-08-22
Published:
2025-08-28
Contact:
*E-mail: luyiqiao@mail.ipc.ac.cn.
CLC Number:
Yanping Chu, Feng Gao, Weihua Zhang, Lei Zhang, Lu Zhang. Study on interfacial dilational rheology of surfactant flooding with low-interfacial-tension surfactants[J].China Surfactant Detergent & Cosmetics, 2025, 55(8): 961-968.
[1] | 刘必心, 侯吉瑞, 张宁. 氢氧化钠对重烷基苯磺酸钠水溶液/油体系界面张力的影响[J]. 日用化学工业, 2014, 44 (4) : 200-203, 221. |
[2] | Xiao Baoqing, Qu Jingkui.Synthesis and interfacial properties of alkylbenzene sulfonates for flooding[G]//Institute of Electrical and Electronics Engineers. 2010 International Conference on Mechanic Automation and Control Engineering. Wuhan: Institute of Electrical and Electronics Engineers, 2010: 1701-1705. |
[3] | Niu R X, He J Y, Long B, et al. Adsorption, wetting, foaming, and emulsification properties of mixtures of nonylphenol dodecyl sulfonate based on linear alpha-olefin and heavy alkyl benzene sulfonate[J]. Journal of Dispersion Science and Technology, 2018, 39 (8) : 1108-1114. |
[4] | Li G, Zhou Z, Fan J, et al. Study on microscopic oil displacement mechanism of alkaline-surfactant-polymer ternary flooding[J]. Materials, 2024. |
[5] | Liu B, Hou J, Tang H, et al. Experimental study of the effect of strong alkali on lowering the interfacial tension of oil/heavy alkylbenzene sulfonates system[J]. Chinese Journal of Chemistry, 2011, 29 (11) : 2315-2319. |
[6] | 王伟, 岳湘安, 张立娟, 等. 超低界面张力石油磺酸盐复配驱油剂研究[J]. 日用化学工业, 2011, 41 (5) : 334-337. |
[7] | Luan H, Zhou Z, Xu C, et al. Study on the synergistic effects between petroleum sulfonate and a nonionic-anionic surfactant for enhanced oil recovery[J]. Energies, 2022, 15 (3) : 1177. |
[8] | Zhao Y, Xu Z, Li Z, et al. Synthesis and interfacial tension behavior of heavy alkyl benzene sulfonates[J]. Petroleum Science and Technology, 2006, 24 (7) : 821-827. |
[9] | Li X, Yue X A, Wang Z, et al. Role of emulsification and interfacial tension of a surfactant for oil film displacement[J]. Energy & Fuels, 2021, 35 (4) : 3032-3041. |
[10] | Mahboob A, Kalam S, Kamal M S, et al. EOR Perspective of microemulsions: A review[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109312. |
[11] | Zhao H, Kang W, Yang H, et al. Emulsification and stabilization mechanism of crude oil emulsion by surfactant synergistic amphiphilic polymer system[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 609: 125726. |
[12] | Sun Q, Zhou Z H, Han L, et al. How to regulate the migration ability of emulsions in micro-scale pores: droplet size or membrane strength?[J]. Molecules, 2023, 28 (4) : 1672. |
[13] | Marquez R, Ontiveros J F, Barrios N, et al. Advantages and limitations of different methods to determine the optimum formulation in surfactant-oil-water systems: a review[J]. Journal of Surfactants and Detergents, 2024, 27 (1) : 5-36. |
[14] | 张磊, 宫清涛, 周朝辉, 等. 旋转滴方法测量界面扩张流变性质[J]. 物理化学学报, 2009, 25 (1) : 41-46. |
[15] | Alvarado J G, Bullón J, Salazar-Rodríguez F, et al. n-C7 Asphaltenes characterization as surfactants and polar oil from the HLDN model perspective[J]. Industrial & Engineering Chemistry Research, 2023, 62 (30) : 11872-11884. |
[16] |
Marquez R, Antón R, Vejar F, et al. New interfacial rheology characteristics measured using a spinning drop rheometer at the optimum formulation. Part 2. Surfactant-oil-water systems with a high volume of middle-phase microemulsion[J]. Journal of Surfactants and Detergents, 2019, 22 (2) : 177-188.
doi: 10.1002/jsde.12245 |
[17] | Marquez R, Acevedo N, Rondón M, et al. Breaking of water-in-crude oil emulsions. 10. Experimental evidence from a quartz crystal resonator sensor and an oscillating spinning drop interfacial rheometer[J]. Energy & Fuels, 2023, 37 (4) : 2735-2749. |
[18] | Ma G, Gong Q, Xu Z, et al. The interfacial dilational rheology of surfactant solutions with low interfacial tension[J]. Molecules, 2025, 30 (3) : 447. |
[19] |
Zhang L, Luo L, Zhao S, et al. Studies of synergism/antagonism for lowering dynamic interfacial tensions in surfactant/alkali/acidic oil systems. Part 1: synergism/antagonism in surfactant/model oil systems[J]. Journal of Colloid and Interface Science, 2002, 249 (1) : 187-193.
pmid: 16290585 |
[20] | Gao S T. Generation of low interfacial tension and determination of the EACN of Daqing crude oil[J]. Oilfield Chemistry, 1985, 2 (2) : 96-102. |
[21] | Sun H Q, Guo Z Y, Cao X L, et al. Interfacial interactions between oleic acid and betaine molecules at decane-water interface: a study of dilational rheology[J]. Journal of Molecular Liquids, 2020, 316: 113784. |
[22] | Jiang Q, Zhu Y W, Liu Y, et al. Studies on interfacial interactions between extended surfactant and betaine by dilational rheology[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2025, 710: 136245. |
[23] | Liu K X, Yin H J, Zhang L, et al. Effect of EO group on the interfacial dilational rheology of fatty acid methyl ester solutions[J]. Colloids and Surfaces A, 2018, 553: 11-19. |
[24] | Liu K X, Yin H J, Zhang L, et al. Interfacial dilational rheology of fatty acid methyl ester and alkyl benzene sulfonate mixed solutions[J]. Journal of Molecular Liquids, 2018, 269: 335-343. |
[25] | Xin X, Zhang H, Xu G, et al. Influence of CTAB and SDS on the properties of oil-in-water nano-emulsion with paraffin and Span 20/Tween 20[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 418: 60-67. |
[26] | Chen Z, Zhang P, Sun Y, et al. Interfacial dilational rheology of sodium lauryl glycine and mixtures with conventional surfactants[J]. Journal of Surfactants and Detergents, 2019, 22 (6) : 1477-1485. |
[27] | Marquez R, Bullon J, Forgiarini A, et al. The oscillatory spinning drop technique. An innovative method to measure dilational interfacial rheological properties of brine-crude oil systems in the presence of asphaltenes[J]. Colloids and Interfaces, 2021, 5 (3) : 42. |
[28] |
Marquez R, Meza L, Alvarado J G, et al. Interfacial rheology measured with a spinning drop interfacial rheometer: particularities in more realistic surfactant-oil-water systems close to optimum formulation at HLD= 0[J]. Journal of Surfactants and Detergents, 2021, 24 (4) : 587-601.
doi: 10.1002/jsde.12502 |
[29] | Marquez R, Forgiarini A M, Langevin D, et al. Breaking of water-in-crude oil emulsions. Part 9. New interfacial rheology characteristics measured using a spinning drop rheometer at optimum formulation[J]. Energy & Fuels, 2019, 33 (9) : 8151-8164. |
[30] |
Zamora J M, Marquez R, Forgiarini A M, et al. Interfacial rheology of low interfacial tension systems using a new oscillating spinning drop method[J]. Journal of Colloid and Interface Science, 2018, 519: 27-37.
doi: S0021-9797(18)30155-3 pmid: 29477897 |
[31] | Marquez R, Forgiarini A M, Fernández J, et al. New interfacial rheology characteristics measured using a spinning-drop rheometer at the optimum formulation of a simple surfactant-oil-water system[J]. Journal of Surfactants and Detergents, 2018, 21 (5) : 611-623. |
[32] |
Marquez R, Forgiarini A M, Langevin D, et al. Instability of emulsions made with surfactant-oil-water systems at optimum formulation with ultralow interfacial tension[J]. Langmuir, 2018, 34 (31) : 9252-9263.
doi: 10.1021/acs.langmuir.8b01376 pmid: 29986590 |
[1] | Juan Zhang, Ping Liu, Xiaokang Hou, Yuan Gao, Qichao Lv, Zihao Yang. Study on the phase behavior and influencing factors for the emulsions of crude oil/petroleum sulfonate under reservoir conditions [J]. China Surfactant Detergent & Cosmetics, 2025, 55(8): 969-979. |
[2] | Yawen Li, Weixin Li, Fenglun Zhang, Shihong Ma, Jianxin Jiang, Liwei Zhu. Synergistic properties of the binary mixed system of natural green surfactants: Camellia oleifera saponin and sodium cocoyl glycinate [J]. China Surfactant Detergent & Cosmetics, 2025, 55(7): 831-843. |
[3] | Hui Xu. Effects of microcapsulated emulsion polymer on the interfacial tension of extended surfactants [J]. China Surfactant Detergent & Cosmetics, 2025, 55(4): 407-414. |
[4] | Binlin Pan. Study on the performance of extended surfactants in reducing interfacial tension under seawater conditions [J]. China Surfactant Detergent & Cosmetics, 2024, 54(7): 759-766. |
[5] | Xiaojie Zhang, Mingzhe Zhang, Zhicheng Xu, Qingtao Gong, Lei Zhang, Lu Zhang. Study on oil displacement mechanism of alkyl carboxyl betaine [J]. China Surfactant Detergent & Cosmetics, 2024, 54(2): 123-130. |
[6] | Xiaoding Zeng, Yancheng Zheng, Guoqing Zhang, Lingchi Zeng, Jian Mu. Performance of branched-chain extended surfactant mixed with zwitterionic or cationic surfactant [J]. China Surfactant Detergent & Cosmetics, 2024, 54(12): 1405-1413. |
[7] | Chang Shiteng, Cai Xiaojun, Zheng Yancheng, Liu Xuejin, Yi Xiao, Jiang Zhuyang. Physicochemical properties of ethoxylated sulfosuccinate surfactants and their interfacial properties when mixed with a betaine surfactant [J]. China Surfactant Detergent & Cosmetics, 2023, 53(9): 989-998. |
[8] | Yi Xiao, Tian Fuquan, Zheng Yancheng, Wang Shuaidong, Cai Xiaojun, Luo Fangcao, Chang Shiteng. Properties of mixtures of tetradecanoic acid monoethanolamide ether sulfonate and tetradecanoic acid diethanolamide [J]. China Surfactant Detergent & Cosmetics, 2023, 53(6): 609-616. |
[9] | Yang Bin. Study on rheological and interfacial properties of a synergistic mixture of hydrophobically associating polymer HAWP and erucamidopropyl allyl ammonium bromide [J]. China Surfactant Detergent & Cosmetics, 2023, 53(4): 365-372. |
[10] | Wang Qihao,Guo Haiyan,Wang Yuyi,Huang Xiaohe,Zhang Ya,Long Yunqian. Evaluation of enhanced oil recovery of the binary composite flooding system based on the sulfonate of kitchen waste oil and polyacrylamide [J]. China Surfactant Detergent & Cosmetics, 2021, 51(10): 932-938. |
[11] | CAO Sheng-ti,JIAO Ti-liu,HUO Yue-qing,LIU Xiao-chen,NIU Jin-ping. Study of the performance of sodium alkyl diphenyl ether disulfonates [J]. China Surfactant Detergent & Cosmetics, 2020, 50(12): 829-832. |
[12] | CHEN Kai-li,LIU Dong,ZHANG Yun,NI Xin-jiong,CAO Yu-hua,CAO Guang-qun. Effects of sodium chloride on the multiple emulsion encapsulating Vitamin C [J]. China Surfactant Detergent & Cosmetics, 2019, 49(12): 805-810. |
[13] | XUE Dan-dan,LI Yi-fei,ZHANG Jian,HAO Jun-sheng,HUANG Xin,ZHANG Yue. Synthesis and interfacial properties of novel symmetric amphiphilic silicon-containing polymers [J]. China Surfactant Detergent & Cosmetics, 2018, 48(10): 571-576. |
[14] | YIN Dai-yin, ZHONG Yu-cang. Performance of SB-16/SDS blend surfactant microemulsion flooding system [J]. China Surfactant Detergent & Cosmetics, 2018, 48(1): 14-17. |
[15] | WANG Ping, YANG Xu-zhao, XU Qing-jie, ZOU Wen-yuan, WANG Jun. Synthesis and application of ionic liquid surfactants (Ⅵ)Interfacial tension [J]. China Surfactant Detergent & Cosmetics, 2017, 47(6): 307-311. |
|