日用化学工业(中英文) ›› 2025, Vol. 55 ›› Issue (11): 1378-1387.doi: 10.3969/j.issn.2097-2806.2025.11.002
收稿日期:2025-09-01
修回日期:2025-11-27
出版日期:2025-11-22
发布日期:2025-12-22
Qiusi Yan1,Hui Bi1,Wenxin Dong2,Aihua Zou1,*(
)
Received:2025-09-01
Revised:2025-11-27
Online:2025-11-22
Published:2025-12-22
摘要:
用溶胶-凝胶法制备壳聚糖纳米颗粒,以PDMS为油相,高速剪切得壳聚糖皮克林乳液(CS-PE),其中壳聚糖颗粒占乳液总质量0.4%,水油比4∶4。再经高速剪切制得负载馨肤白377 (PR)的CS-PE (称其PR CS-PE),其包封率为97.2%±0.2%,载药量为2.3%±0.01%。PR CS-PE的DPPH和ABTS自由基清除率分别为77.4%和93.8%,表明其具有良好的抗氧化性。Franz体外透皮实验结果表明PR CS-PE中PR为缓慢释放。此外PR CS-PE可有效抑制斑马鱼黑色素的生成,具有良好的美白活性。斑马鱼胚胎发育和细胞毒性实验结果表明负载有馨肤白的壳聚糖皮克林乳液配方与纯PR相比,毒性降低,表明馨肤白/壳聚糖皮克林乳液在化妆品领域具有潜在的应用价值。
中图分类号:
严秋思, 毕晖, 董文心, 邹爱华. 馨肤白/壳聚糖皮克林乳液的制备及美白活性评价[J]. 日用化学工业(中英文), 2025, 55(11): 1378-1387.
Qiusi Yan, Hui Bi, Wenxin Dong, Aihua Zou. Preparation and skin-whitening activity evaluation of phenylethyl resorcinol/chitosan Pickering emulsion[J]. China Surfactant Detergent & Cosmetics, 2025, 55(11): 1378-1387.
表1
DPPH自由基清除率实验所用样品"
| 样品名称 | DPPH乙醇溶液/mL | PR CS-PE乳液/mL | PE乳液/ mL | PR-TW80乳液/mL | TW80乳液/ mL | PR乙醇乳液/ mL | 乙醇/ mL |
|---|---|---|---|---|---|---|---|
| DPPH乙醇溶液(A0) | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
| PR CS-PE乳液(A1) | 2 | 2 | 0 | 0 | 0 | 0 | 0 |
| PR CS-PE乳液(A2) | 0 | 2 | 0 | 0 | 0 | 0 | 2 |
| PE乳液(A1) | 2 | 0 | 2 | 0 | 0 | 0 | 0 |
| PE乳液(A2) | 0 | 0 | 2 | 0 | 0 | 0 | 2 |
| PR-TW80乳液(A1) | 2 | 0 | 0 | 2 | 0 | 0 | 0 |
| PR-TW80乳液(A2) | 0 | 0 | 0 | 2 | 0 | 0 | 2 |
| TW80乳液(A1) | 2 | 0 | 0 | 0 | 2 | 0 | 0 |
| TW80乳液(A2) | 0 | 0 | 0 | 0 | 2 | 0 | 2 |
| PR乙醇溶液(A1) | 2 | 0 | 0 | 0 | 0 | 2 | 0 |
| PR乙醇溶液(A2) | 0 | 0 | 0 | 0 | 0 | 2 | 2 |
| [1] |
Zhang Y, Sil B C, Kung C P, et al. Characterization and topical delivery of phenylethyl resorcinol[J]. Int J Cosmet Sci, 2019, 41 (5) : 479-488.
doi: 10.1111/ics.v41.5 |
| [2] | Schmaus G, Vielhaber G, Jacobs K, et al. 4- (1-phenylethyl) 1, 3-benzenediol: A new highly potent lightening agent[J]. J Cosmet Sci, 2006, 57 (2) : 197-198. |
| [3] |
Sorg O, Kasraee B, Salomon D, et al. The combination of a retinoid, a phenolic agent and an antioxidant improves tolerance while retaining an optimal depigmenting action in reconstructed epidermis[J]. Dermatology, 2013, 227 (2) : 150-156.
doi: 10.1159/000353578 |
| [4] | 于承仟, 徐学刚, 李远宏. 苯乙基间苯二酚的研究应用进展[J]. 中国皮肤性病学杂志, 2020, 34 (6) : 692-695. |
| [5] |
Amnuaikit T, Limsuwan T, Khongkow P, et al. Vesicular carriers containing phenylethyl resorcinol for topical delivery system; liposomes, transfersomes and invasomes[J]. Asian J Pharm Sci, 2018, 13 (5) : 472-484.
doi: 10.1016/j.ajps.2018.02.004 pmid: 32104421 |
| [6] |
Köpke D, Muller R H, Pyo S M. Phenylethyl resorcinol smartlipids for skin brightening-increased loading & chemical stability[J]. Eur J Pharm Sci, 2019, 137: 104992.
doi: 10.1016/j.ejps.2019.104992 |
| [7] |
Kim B S, Na Y G, Choi J H, et al. The improvement of skin whitening of phenylethyl resorcinol by nanostructured lipid carriers[J]. Nanomaterials (Basel), 2017, 7 (9) : 241: 1-13.
doi: 10.3390/nano7010001 |
| [8] |
Demina P A, Bukreeva T V. Pickering emulsion stabilized by commercial titanium dioxide nanoparticles in the form of rutile and anatase[J]. Nanotechnologies in Russia, 2018, 13 (7/8) : 425-429.
doi: 10.1134/S1995078018040043 |
| [9] | Tan J S J, Wong S L Y, Chen Z. Preparation of Janus titanium dioxide particles via ultraviolet irradiation of Pickering emulsions[J]. Advanced Materials Interfaces, 2020, 1901961. |
| [10] |
Bao Y, Zhang Y, Liu P, et al. Novel fabrication of stable Pickering emulsion and latex by hollow silica nanoparticles[J]. Journal of Colloid and Interface Science, 2019, 553: 83-90.
doi: S0021-9797(19)30681-2 pmid: 31195217 |
| [11] | Gálvez-Vergara A, Fresco-Cala B, Cárdenas S. Switchable Pickering emulsions stabilized by polystyrene-modified magnetic nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 606. |
| [12] |
Li W, Suzuki T, Minami H. The interface adsorption behavior in a Pickering emulsion stabilized by cylindrical polystyrene particles[J]. J Colloid Interface Sci, 2019, 552: 230-235.
doi: 10.1016/j.jcis.2019.05.058 |
| [13] |
Bouhoute M, Taarji N, de Oliveira Felipe L, et al. Microfibrillated cellulose from argania spinosa shells as sustainable solid particles for O/W Pickering emulsions[J]. Carbohydr Polym, 2021, 251: 116990.
doi: 10.1016/j.carbpol.2020.116990 |
| [14] |
Shi A, Feng X, Wang Q, et al. Pickering and high internal phase Pickering emulsions stabilized by protein-based particles: A review of synthesis, application and prospective[J]. Food Hydrocolloids, 2020, 109: 106117.
doi: 10.1016/j.foodhyd.2020.106117 |
| [15] | Zhu F. Starch based Pickering emulsions: Fabrication, properties, and applications[J]. Trends in Food Science & Technology, 2019, 85: 129-137. |
| [16] |
Zhai X, Lin D, Liu D, et al. Emulsions stabilized by nanofibers from bacterial cellulose: New potential food-grade Pickering emulsions[J]. Food Res Int, 2018, 103: 12-20.
doi: S0963-9969(17)30711-1 pmid: 29389597 |
| [17] |
Tiong A C Y, Tan I S, Foo H C Y, et al. Macroalgae-derived regenerated cellulose in the stabilization of oil-in-water Pickering emulsions[J]. Carbohydr Polym, 2020, 249: 116875.
doi: 10.1016/j.carbpol.2020.116875 |
| [18] |
Jia Y, Zheng M, Xu Q, et al. Rheological behaviors of Pickering emulsions stabilized by tempo-oxidized bacterial cellulose[J]. Carbohydr Polym, 2019, 215: 263-271.
doi: 10.1016/j.carbpol.2019.03.073 |
| [19] |
Ahmed R, Wang M, Qi Z, et al. Pickering emulsions based on the pH-responsive assembly of food-grade chitosan[J]. ACS Omega, 2021, 6 (28) : 17915-17922.
doi: 10.1021/acsomega.1c01490 pmid: 34308026 |
| [20] |
Terescenco D, Hucher N, Picard C, et al. Sensory perception of textural properties of cosmetic Pickering emulsions[J]. Int J Cosmet Sci, 2020, 42 (2) : 198-207.
doi: 10.1111/ics.v42.2 |
| [21] | Almajidi Y Q, Gupta J, Sheri F S, et al. Advances in chitosan-based hydrogels for pharmaceutical and biomedical applications: A comprehensive review[J]. Int J Biol Macromol, 2023, 253 (6) : 127278. |
| [22] |
Meng W, Sun H, Mu T, et al. Chitosan-based Pickering emulsion: A comprehensive review on their stabilizers, bioavailability, applications and regulations[J]. Carbohydr Polym, 2023, 304: 120491.
doi: 10.1016/j.carbpol.2022.120491 |
| [23] |
Bhutto R A, Wang M, Iqbal S, et al. Curcumin-loaded Pickering emulsion stabilized by pH-induced self-aggregated chitosan particles: Effects of degree of deacetylation and molecular weight[J]. Food Hydrocolloids, 2024, 147: 109422.
doi: 10.1016/j.foodhyd.2023.109422 |
| [24] |
Saiki P, Mello-Andrade F, Gomes T, et al. Sediment toxicity assessment using zebrafish (Danio rerio) as a model system: Historical review, research gaps and trends[J]. Sci Total Environ, 2021, 793: 148633.
doi: 10.1016/j.scitotenv.2021.148633 |
| [25] | 董思颖, 陈亮, 张璐, 等. 基于斑马鱼实验模型评价人参玫瑰膏改善气血健康作用[J]. 时珍国医国药, 2021, 32 (9) : 2295-2298. |
| [26] |
Bai L, Huan S, Xiang W, et al. Pickering emulsions by combining cellulose nanofibrils and nanocrystals: Phase behavior and depletion stabilization[J]. Green Chemistry, 2018, 20 (7) : 1571-1582.
doi: 10.1039/C8GC00134K |
| [27] |
Ye F, Miao M, Cui S W, et al. Characterisations of oil-in-water Pickering emulsion stabilized hydrophobic phytoglycogen nanoparticles[J]. Food Hydrocolloids, 2018, 76: 78-87.
doi: 10.1016/j.foodhyd.2017.05.003 |
| [28] |
Mession J L, Assifaoui A, Lafarge C, et al. Protein aggregation induced by phase separation in a pea proteins-sodium alginate-water ternary system[J]. Food Hydrocolloids, 2012, 28 (2) : 333-343.
doi: 10.1016/j.foodhyd.2011.12.022 |
| [29] |
Argatov I, Iantchenko A, Kocherbitov V. How to define the storage and loss moduli for a rheologically nonlinear material? A constructive review of nonlinear rheological measures[J]. Continuum Mechanics and Thermodynamics, 2017, 29: 1375-1387.
doi: 10.1007/s00161-017-0584-8 |
| [30] |
Costa A L R, Gomes A, Cunha R L. One-step ultrasound producing O/W emulsions stabilized by chitosan particles[J]. Food Research International, 2018, 107: 717-725.
doi: S0963-9969(18)30150-9 pmid: 29580539 |
| [31] |
Ahmed Bhutto R, Hira Bhutto N U A, Wang M, et al. Curcumin-loaded Pickering emulsion stabilized by pH-induced self-aggregated chitosan particles: Effects of degree of deacetylation and molecular weight[J]. Food Hydrocolloids, 2024, 147: 109422.
doi: 10.1016/j.foodhyd.2023.109422 |
| [32] |
Lv H, Wang Z, An J, et al. Preparation and emulsifying properties of carbon-based Pickering emulsifier[J]. Processes, 2023, 11: 1070.
doi: 10.3390/pr11041070 |
| [33] | Elmastas M, Turkekul I, Ozturk L, et al. Antioxidant activity of two wild edible mushrooms (Morchella vulgaris and Morchella esculanta) from north turkey[J]. Combinatorial Chemistry & High Throughput Screening, 2006, 9 (6) : 443-448. |
| [34] |
Chen W, Pan H, Sheng Y, et al. Pickering emulsion stabilized by sugarcane leaf polyphenols-zein covalent nanoparticles for curcumin delivery: In-vitro and inhibition of oxidative hemolytic activity evaluation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 687: 133539.
doi: 10.1016/j.colsurfa.2024.133539 |
| [35] |
Woo K, Shih J, Fraser S E. Fate maps of the zebrafish embryo[J]. Curr Opin Genet Dev, 1995, 5 (4) : 439-443.
pmid: 7580134 |
| [36] | Brönnimann D, Annese T, Gorr T A, et al. Splitting of circulating red blood cells as an in vivo mechanism of erythrocyte maturation in developing zebrafish, chick and mouse embryos[J]. J Exp Biol, 2018, 221 (15) : jeb184564-jeb184576. |
| [37] |
Jong J L, Zon L I. Use of the zebrafish system to study primitive and definitive hematopoiesis[J]. Annu Rev Genet, 2005, 39: 481-501.
pmid: 16285869 |
| [38] |
Caro M, Iturria I, Martinez-Santos M, et al. Zebrafish dives into food research: Effectiveness assessment of bioactive compounds[J]. Food Funct, 2016, 7 (6) : 2615-2623.
doi: 10.1039/c6fo00046k pmid: 27109696 |
| [39] | Behar R Z, Luo W, Lin S C, et al. Distribution, quantification and toxicity of cinnamaldehyde in electronic cigarette refill fluids and aerosols[J]. Tob Control, 2016, 25 (S2) : ii94-ii102. |
| [40] |
Stockert J C, Horobin R W, Colombo L L, et al. Tetrazolium salts and formazan products in cell biology: Viability assessment, fluorescence imaging, and labeling perspectives[J]. Acta Histochem, 2018, 120 (3) : 159-167.
doi: S0065-1281(17)30474-9 pmid: 29496266 |
| [41] | 管淑玉. 黑色素相关研究中动物模型的应用进展[J]. 中国实验动物学报, 2009, 17 (6) : 475-477. |
| [42] | Zhang J, Chambers I, Yun S, et al. Hrg1 promotes heme-iron recycling during hemolysis in the zebrafish kidney[J]. PLoS Genet, 2018, 14 (9) : e1007665. |
| [43] |
Logan D W, Burn S F, Jackson I J. Regulation of pigmentation in zebrafish melanophores[J]. Pigment Cell Res, 2006, 19 (3) : 206-213.
doi: 10.1111/pcr.2006.19.issue-3 |
| [1] | 刘敏, 叶磊, 蒋玲玲, 郑久炎. 神经酰胺脂质体对光损伤的修护及机械损伤的修复功效研究[J]. 日用化学工业(中英文), 2025, 55(7): 902-908. |
| [2] | 李怡桐, 孙艳艳, 乔绍俊, 侯丽莉, 李熳琴, 于玉凤. 消毒剂对重组Ⅲ型人源化胶原蛋白促细胞黏附活性的影响[J]. 日用化学工业(中英文), 2023, 53(7): 789-895. |
| [3] | 陈凤凤,陶胜男,龚穗菁,张圣伟,孙亚娟,杨成,李云兴. 化妆品乳液及乳化新技术(I)——皮克林乳液的基本原理及其在化妆品中的应用[J]. 日用化学工业, 2021, 51(2): 89-97. |
| [4] | 朱洲海, 刘凤至, 黄海涛, 张涛, 米其利, 管莹, 夭建华. 几种儿童牙膏体外细胞毒性研究[J]. 日用化学工业, 2015, 45(5): 282-284. |
| [5] | 李燕, 陈建英, 王晓梅, 刘霞, 陈倩倩, 凌沛学. 硅烷化玻璃酸酯的制备及其护肤功效研究[J]. 日用化学工业, 2014, 44(9): 497-500. |
|