日用化学工业(中英文) ›› 2025, Vol. 55 ›› Issue (1): 12-25.doi: 10.3969/j.issn.2097-2806.2025.01.002
收稿日期:
2024-10-19
出版日期:
2025-01-22
发布日期:
2025-01-23
基金资助:
Shida Hou,Ping Peng,Yuankang Liu,Jing Yan*(),Yi Yan*(
)
Received:
2024-10-19
Online:
2025-01-22
Published:
2025-01-23
Contact:
E-mail: 摘要:
生物体不同组织维系正常的生理功能离不开天然润滑剂对组织摩擦界面的润滑作用。当组织界面因各种因素导致润滑功能丧失时,即需要依靠功能性外源润滑材料提供润滑功能。本研究在详细介绍天然润滑剂的种类及生物界面润滑机制的基础上,综述了近年来国内外对于不同组织摩擦界面的润滑策略和聚合物润滑材料构建方面的研究进展。重点总结了用于皮肤保湿润滑、关节软骨润滑、黏膜润滑、抗组织粘连和医用导管润滑等聚合物材料的作用机理、润滑性能和兼具的生物学功能,强调了这些聚合物材料在降低组织摩损和促进受损组织修复方面的独特贡献。此外,还对聚合物润滑材料的功能性优化和应用开发进行了前瞻性展望,希望为聚合物材料在生物组织界面润滑领域的未来发展提供一定的指导作用。
中图分类号:
侯仕达, 彭平, 刘远康, 颜静, 闫毅. 生物润滑用聚合物材料研究进展[J]. 日用化学工业(中英文), 2025, 55(1): 12-25.
Shida Hou, Ping Peng, Yuankang Liu, Jing Yan, Yi Yan. Advances in polymeric materials for bio-lubrication[J]. China Surfactant Detergent & Cosmetics, 2025, 55(1): 12-25.
[1] | Schwarzenbach J, Dowson D. A Final year undergraduate lecture course on tribology[J]. Wear, 1976, 38 (1) : 153-163. |
[2] | Hunter D J, Bierma-Zeinstra S. Osteoarthritis[J]. The Lancet, 2019, 393 (10182) : 1745-1759. |
[3] | Søreide K, Skjold-Ødegaard B, Thorsen K, et al. Adhesions after open and laparoscopic abdominal surgery[J]. The Lancet, 2021, 397 (10269) : 95-96. |
[4] |
Song X, Man J, Qiu Y, et al. Design, preparation, and characterization of lubricating polymer brushes for biomedical applications[J]. Acta Biomaterialia, 2024, 175: 76-105.
doi: 10.1016/j.actbio.2023.12.024 pmid: 38128641 |
[5] | Yuan H, Mears L L E, Wang Y, et al. Lubricants for osteoarthritis treatment: From natural to bioinspired and alternative strategies[J]. Advances in Colloid and Interface Science, 2023, 311: 102814. |
[6] | Yang L, Zhao X, Ma Z. An overview of functional biolubricants[J]. Friction, 2023, 11 (1) : 23-47. |
[7] | Gonzales G, Zauscher S, Varghese S. Progress in the design and synthesis of viscosupplements for articular joint lubrication[J]. Current Opinion in Colloid & Interface Science, 2023, 66: 101708. |
[8] |
Grandoch M, Bollyky P L, Fischer J W. Hyaluronan[J]. Circulation Research, 2018, 122 (10) : 1341-1343.
doi: 10.1161/CIRCRESAHA.118.312522 pmid: 29748364 |
[9] | Radin E L, Swann D A, Weisser P A. Separation of a hyaluronate-free lubricating fraction from synovial fluid[J]. Nature, 1970, 228 (5269) : 377-378. |
[10] | Lee S, Spencer N D. Sweet, hairy, soft, and slippery[J]. Science, 2008, 319 (5863) : 575-576. |
[11] |
Petrou G, Crouzier T. Mucins as multifunctional building blocks of biomaterials[J]. Biomaterials Science, 2018, 6 (9) : 2282-2297.
doi: 10.1039/c8bm00471d pmid: 30047553 |
[12] |
Jahn S, Seror J, Klein J. Lubrication of articular cartilage[J]. Annual Review of Biomedical Engineering, 2016, 18: 235-258.
doi: 10.1146/annurev-bioeng-081514-123305 pmid: 27420572 |
[13] | Lu K H, Lu W A, Lin C W, et al. Different molecular weights of hyaluronan research in knee osteoarthritis: A state-of-the-art review[J]. Matrix Biology, 2023, 117: 46-71. |
[14] |
Käsdorf B T, Weber F, Petrou G, et al. Mucin-inspired lubrication on hydrophobic surfaces[J]. Biomacromolecules, 2017, 18 (8) : 2454-2462.
doi: 10.1021/acs.biomac.7b00605 pmid: 28635258 |
[15] |
Sarma A V, Powell G L, LaBerge M. Phospholipid composition of articular cartilage boundary lubricant[J]. Journal of Orthopaedic Research, 2001, 19 (4) : 671-676.
doi: 10.1016/S0736-0266(00)00064-4 pmid: 11518278 |
[16] | Verberne G, Schroeder A, Halperin G, et al. Liposomes as potential biolubricant additives for wear reduction in human synovial joints[J]. Wear, 2010, 268 (7) : 1037-1042. |
[17] | Feng S, Li J, Li X, et al. Synergy of phospholipid and hyaluronan based super-lubricated hydrogels[J]. Applied Materials Today, 2022, 27: 101499. |
[18] |
Lin W, Mashiah R, Seror J, et al. Lipid-hyaluronan synergy strongly reduces intrasynovial tissue boundary friction[J]. Acta Biomaterialia, 2019, 83: 314-321.
doi: S1742-7061(18)30669-X pmid: 30423432 |
[19] | Lin W, Klein J. Recent progress in cartilage lubrication[J]. Advanced Materials, 2021, 33 (18) : 2005513. |
[20] |
DeMoya C D, Joenathan A, Lawson T B, et al. Advances in viscosupplementation and tribosupplementation for early-stage osteoarthritis therapy[J]. Nature Reviews Rheumatology, 2024, 20 (7) : 432-451.
doi: 10.1038/s41584-024-01125-5 pmid: 38858605 |
[21] | Klein J. Hydration lubrication[J]. Friction, 2013, 1 (1) : 1-23. |
[22] | Cao Y, Klein J. Lipids and lipid mixtures in boundary layers: From hydration lubrication to osteoarthritis[J]. Current Opinion in Colloid & Interface Science, 2022, 58: 101559. |
[23] | Bi Z, Mueller D W, Zhang C W J. State of the art of friction modelling at interfaces subjected to elastohydrodynamic lubrication (EHL)[J]. Friction, 2021, 9 (2) : 207-227. |
[24] | Mitura S, Sionkowska A, Jaiswal A. Biopolymers for hydrogels in cosmetics: review[J]. Journal of Materials Science: Materials in Medicine, 2020, 31 (6) : 50. |
[25] | Zhang T, Guo Q, Xin Y, et al. Comprehensive review in moisture retention mechanism of polysaccharides from algae, plants, bacteria and fungus[J]. Arabian Journal of Chemistry, 2022, 15 (10) : 104163. |
[26] | Cha S Y, Park S Y, Lee J S, et al. Efficacy of Dendrobium candidum polysaccharide extract as a moisturizer[J]. Journal of Cosmetic Dermatology, 2022, 21 (7) : 3117-3126. |
[27] | Li X, Wei J, Lin L, et al. Extraction, moisturizing activity and potential application in skin cream of Akebia trifoliata (Thunb.) Koidz polysaccharide[J]. Industrial Crops and Products, 2023, 197: 116613. |
[28] | Yang M, Zhang Z, He Y, et al. Study on the structure characterization and moisturizing effect of Tremella polysaccharide fermented from GCMCC5.39[J]. Food Science and Human Wellness, 2021, 10 (4) : 471-479. |
[29] | Li H, Xu J, Liu Y, et al. Antioxidant and moisture-retention activities of the polysaccharide from Nostoc commune[J]. Carbohydrate Polymers, 2011, 83 (4) : 1821-1827. |
[30] |
Xu H, Wu Z, Zhao D, et al. Preparation and characterization of electrospun nanofibers-based facial mask containing hyaluronic acid as a moisturizing component and huangshui polysaccharide as an antioxidant component[J]. International Journal of Biological Macromolecules, 2022, 214: 212-219.
doi: 10.1016/j.ijbiomac.2022.06.047 pmid: 35709871 |
[31] | Yang M, Zhao T, Xia W, et al. In-situ electrospinning with precise deposition of antioxidant nanofiber facial mask loaded with Enteromorpha prolifera polysaccharides[J]. International Journal of Biological Macromolecules, 2024, 257: 128698. |
[32] | Wang Y, Wang N, Liu W, et al. Preparation and evaluation of Gastrodia elata polysaccharide loaded electrospinning nanofiber facial mask[J]. Journal of Applied Polymer Science 2024, 141 (45) : e56199. |
[33] | Swetha M N P, Kamaraj M, Anish S M, et al. Recent progress in polysaccharide and polypeptide based modern moisture-retentive wound dressings[J]. International Journal of Biological Macromolecules, 2024, 256: 128499. |
[34] | Dong X, Sun Q, Xu J, et al. Development of a multifunctional composite hydrogel for enhanced wound healing: hemostasis, sterilization, and long-term moisturizing properties[J]. ACS Applied Materials & Interfaces, 2024, 16 (2) : 2972-2983. |
[35] | An H, Zhang M, Zhou L, et al. Anti-dehydration and rapid trigger-detachable multifunctional hydrogels promote scarless therapeutics of deep burn[J]. Advanced Functional Materials, 2023, 33 (17) : 2211182. |
[36] | Rajankunte M M, Al-Jawad M, Hall R M, et al. How do cartilage lubrication mechanisms fail in osteoarthritis? a comprehensive review[J]. Bioengineering, 2024, 11 (6) : 541. |
[37] | Yu P, Li Y, Sun H, et al. Cartilage-inspired hydrogel with mechanical adaptability, controllable lubrication, and inflammation regulation abilities[J]. ACS Applied Materials & Interfaces, 2022, 14 (23) : 27360-27370. |
[38] | Charmi G, Rahimi M, Socha K, et al. Bottlebrush polymer with dual functionality for osteoarthritis treatment: curcumin delivery and lubrication properties[J]. Polymer Chemistry, 2023, 14 (33) : 3827-3833. |
[39] | Zhang M, Peng X, Ding Y, et al. A cyclic brush zwitterionic polymer based pH-responsive nanocarrier-mediated dual drug delivery system with lubrication maintenance for osteoarthritis treatment[J]. Materials Horizons, 2023, 10 (7) : 2554-2567. |
[40] | Yu P, Li Y, Sun H, et al. Mimicking antioxidases and hyaluronan synthase: a zwitterionic nanozyme for photothermal therapy of osteoarthritis[J]. Advanced Materials, 2023, 35 (44) : 2303299. |
[41] | He Z, Bu P, Xu K, et al. Remodeling of the pro-inflammatory microenvironment in osteoarthritis via hydrogel-based photothermal therapy[J]. Advanced Composites and Hybrid Materials, 2024, 7 (2) : 36. |
[42] | Rahman M M, Kim D H, Park C K, et al. Experimental models, induction protocols, and measured parameters in dry eye disease: focusing on practical implications for experimental research[J]. International Journal of Molecular Sciences 2021, 22 (22) : 12102. |
[43] | Galor A, Moein H R, Lee C, et al. Neuropathic pain and dry eye[J]. The Ocular Surface, 2018, 16 (1) : 31-44. |
[44] | José-María S G, Concepción D H C, María C S G. Crosslinked hyaluronic acid with liposomes and crocin for management symptoms of dry eye disease caused by moderate meibomian gland dysfunction[J]. International Journal of Ophthalmology, 2020, 13 (9) : 1368-1373. |
[45] | Bui H L, Su Y H, Yang C J, et al. Mucoadhesive, antioxidant, and lubricant catechol-functionalized poly(phosphobetaine) as biomaterial nanotherapeutics for treating ocular dryness[J]. Journal of Nanobiotechnology, 2024, 22 (1) : 160. |
[46] | Wang H, Wang Q, Su Y, et al. Thermosensitive triblock copolymer for slow-release lubricants under ocular conditions[J]. ACS Applied Materials & Interfaces, 2024, 16 (1) : 1675-1687. |
[47] | Puertas-Bartolomé M, Gutiérrez-Urrutia I, Teruel-Enrico L L, et al. Self-lubricating, living contact lenses[J]. Advanced Materials, 2024, 36 (27) : 2313848. |
[48] | Blakeley M, Sharma P K, Kaper H J, et al. Lectin-functionalized polyethylene glycol for relief of mucosal dryness[J]. Advanced Healthcare Materials, 2022, 11 (2) : 2101719. |
[49] | Sarkar A, Xu F, Lee S. Human saliva and model saliva at bulk to adsorbed phases-similarities and differences[J]. Advances in Colloid and Interface Science, 2019, 273: 102034. |
[50] | Arany S, Kopycka-Kedzierawski D T, Caprio T V, et al. Anticholinergic medication: Related dry mouth and effects on the salivary glands[J]. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2021, 132 (6) : 662-670. |
[51] | Wan H, Ma C, Vinke J, et al. Next generation salivary lubrication enhancer derived from recombinant supercharged polypeptides for xerostomia[J]. ACS Applied Materials & Interfaces, 2020, 12 (31) : 34524-34535. |
[52] |
Tang J, Xiang Z, Bernards M T, et al. Peritoneal adhesions: Occurrence, prevention and experimental models[J]. Acta Biomaterialia, 2020, 116: 84-104.
doi: 10.1016/j.actbio.2020.08.036 pmid: 32871282 |
[53] | Huang S, Fang Y, Yang B, et al. Zwitterionic biodegradable physical hydrogel based on ATRP technology for effective prevention of postoperative tissue adhesion[J]. Materials & Design, 2023, 227: 111727. |
[54] | Crabtree J H, Burchette R J. Effect of prior abdominal surgery, peritonitis, and adhesions on catheter function and long-term outcome on peritoneal dialysis[J]. The American Surgeon™, 2009, 75 (2) : 140-147. |
[55] | Zhu Y, Zhang C, Liang Y, et al. Advanced postoperative tissue antiadhesive membranes enabled with electrospun nanofibers[J]. Biomaterials Science, 2024, 12 (7) : 1643-1661. |
[56] |
Cai X, Hu S, Yu B, et al. Transglutaminase-catalyzed preparation of crosslinked carboxymethyl chitosan/carboxymethyl cellulose/collagen composite membrane for postsurgical peritoneal adhesion prevention[J]. Carbohydrate Polymers, 2018, 201: 201-210.
doi: S0144-8617(18)30963-9 pmid: 30241812 |
[57] | Zou M, Zhao X, Zhang X, et al. Bio-inspired multiple composite film with anisotropic surface wettability and adhesion for tissue repair[J]. Chemical Engineering Journal, 2020, 398: 125563. |
[58] |
Wang Y, Cheng L, Wen S, et al. Ice-inspired superlubricated electrospun nanofibrous membrane for preventing tissue adhesion[J]. Nano Letters, 2020, 20 (9) : 6420-6428.
doi: 10.1021/acs.nanolett.0c01990 pmid: 32813534 |
[59] | Cheng L, Wang Y, Sun G, et al. Hydration-enhanced lubricating electrospun nanofibrous membranes prevent tissue adhesion[J]. Research, 2020. |
[60] | Wang Y, Xu Y, Zhai W, et al. In-situ growth of robust superlubricated nano-skin on electrospun nanofibers for post-operative adhesion prevention[J]. Nature Communications, 2022, 13 (1) : 5056. |
[61] | Jiang R, Liu X Y, Gao S, et al. A scalable and universal strategy for constructing long-term antibacterial coatings with lubricant property on medical catheters[J]. Progress in Organic Coatings, 2024, 196: 108738. |
[62] | Chopra A M, Mehta M, Bismuth J, et al. Polymer coating embolism from intravascular medical devices—a clinical literature review[J]. Cardiovascular Pathology, 2017, 30: 45-54. |
[63] | Sun C, Zhang Y, Dong F, et al. Fast-polymerized lubricant and antibacterial hydrogel coatings for medical catheters[J]. Chemical Engineering Journal, 2024, 488: 150944. |
[64] | Hu Y, Qiao Y, Lei P, et al. Dual network hydrogel coatings based on recombinant mussel protein with enhanced antibacterial and super-lubrication properties for urinary catheter applications[J]. Chemical Engineering Journal, 2023, 474: 145502. |
[65] | Li S, Bai Y, Liu X, et al. Bio-inspired robust, superhydrophilic and superlubric artificial vascular endothelium coating for anti-thromboinflammation on blood-contacting devices[J]. Composites Part B: Engineering, 2023, 257: 110670. |
[1] | 孙立梅, 何海峰, 安申法, 栾智勇, 孙鹏, 王阳, 严峰. 交联聚醚破乳剂对胜利油田二元驱采出液破乳性能研究[J]. 日用化学工业(中英文), 2024, 54(7): 795-802. |
[2] | 刘庆刚, 严羽欢, 潘鹤潮, 陈雪. 具有表面活性的聚合物在洗涤剂中的应用研究[J]. 日用化学工业(中英文), 2024, 54(5): 527-534. |
[3] | 邓绍林, 周鹏飞, 朱玉龙. 疏水缔合聚合物高效溶解方法研究进展[J]. 日用化学工业(中英文), 2024, 54(4): 449-456. |
[4] | 于萌, 徐国瑞, 李翔, 郑玉飞, 冯轩, 杨劲舟, 刘丰钢. 海上高含水油田用无机复合调驱剂实验研究[J]. 日用化学工业(中英文), 2024, 54(11): 1307-1312. |
[5] | 冯逸鑫, 叶嘉烘, 翁佳丽, 王佳丽, 李燕, 张磊. 织物柔顺剂洗衣伴侣的性能测试与研究[J]. 日用化学工业(中英文), 2024, 54(11): 1362-1367. |
[6] | 张森林, 孙旭东, 张凌飞, 王云. 乙烯基吡咯烷酮/乙烯基咪唑聚合物的制备及其防沾染性[J]. 日用化学工业(中英文), 2023, 53(6): 658-664. |
[7] | 廖建军, 李华斌, 邓金玭, 何刚, 刘思思, 张肖. 高温非均质油藏聚合物凝胶调驱实验研究[J]. 日用化学工业(中英文), 2023, 53(4): 373-381. |
[8] | 张倩洁, 单子悦, 张冬梅, 蒋汶, 张婉萍. 刺激响应型聚合物乳化剂的研究进展[J]. 日用化学工业(中英文), 2023, 53(11): 1305-1314. |
[9] | 孔祥灵, 蓝云萍, 刘晓纯, 王诗琼, 郑益锋, 陈来成, 何秋星. 水溶性聚合物对液晶乳液性能的影响[J]. 日用化学工业(中英文), 2023, 53(10): 1115-1124. |
[10] | 杨超, 童志明, 王占生, 陈武. 聚合物及固体颗粒对原油乳状液稳定性影响机制研究[J]. 日用化学工业(中英文), 2023, 53(10): 1156-1165. |
[11] | 贺文云,徐娜,李小坤,张瑾渊,吕耀东,张兴芳. 消防减阻用聚合物/表面活性剂复配体系实验探索[J]. 日用化学工业, 2022, 52(9): 913-919. |
[12] | 张莉,汪鑫,范维刚,粟智. 溶胶凝胶法制备布洛芬表面分子印迹聚合物及其性能研究[J]. 日用化学工业, 2022, 52(5): 493-498. |
[13] | 秦志昂,张云,刘冬,曹玉华. 双亲性聚合物调理剂在护发素中的应用研究[J]. 日用化学工业, 2022, 52(2): 152-158. |
[14] | 康万利,何瑛琦,杨红斌,王芳,Bauyrzhan Sarsenbekuly. 两亲聚合物设计合成及其增效体系研究(IX)— 流变性能[J]. 日用化学工业, 2020, 50(9): 588-595. |
[15] | 康万利,王芳,杨红斌,朱彤宇,Bauyrzhan Sarsenbekuly. 两亲聚合物设计合成及其增效体系研究(VIII)—— 剪切降解与恢复特性[J]. 日用化学工业, 2020, 50(8): 516-522. |
|