[1] |
Mendoza L, Hossain L, Downey E, et al. Carboxylated nanocellulose foams as super-absorbents[J]. Journal of Colloid and Interface Science, 2019, 538: 433-439.
doi: S0021-9797(18)31434-6
pmid: 30530081
|
[2] |
Li X, Zheng M, Li R, et al. Preparation, microstructure, properties and foaming mechanism of a foamed ceramics with high closed porosity[J]. Ceramics International, 2019, 45 (9) : 11982-11988.
|
[3] |
Yang Z, Zhao X, Ding Y, et al. Structure and mechanical stability of epoxy modified polyurethane foam under heat and stress[J]. Journal of Macromolecular Science, Part B, 2019, 58 (1) : 113-127.
|
[4] |
Ramirez B J, Gupta V. High tear strength polyurea foams with low compression set and shrinkage properties at elevated temperatures[J]. International Journal of Mechanical Sciences, 2019, 150: 29-34.
|
[5] |
Kim B S, Choi J, Park Y S, et al. Semi-rigid polyurethane foam and polymethylsilse-squioxane aerogel composite for thermal insulation and sound absorption[J]. Macrom-olecular Research, 2022, 30 (4) : 245-253.
|
[6] |
Binks B P, Garvey E J, Vieira J. Whipped oil sabilised by surfactant crystals[J]. Chemical Science, 2016, 7 (4) : 2621-2632.
|
[7] |
Mishima S, Suzuki A, Sato K, et al. Formation and microstructures of whipped oils composed of vegetable oils and high-melting fat crystals[J]. Journal of the American Oil Chemists’ Society, 2016, 93: 1453-1466.
|
[8] |
Haedelt J, Beckett S T, Niranjan K. Bubble-included chocolate: relating structure with sensory response[J]. Journal of Food Science, 2007, 72 (3) : 138-142.
pmid: 17995803
|
[9] |
Fameau A L, Binks B P. Aqueous and oil foams stabilized by surfactant crystals: new concepts and perspectives[J]. Langmuir, 2021, 37 (15) : 4411-4418.
|
[10] |
Tyowua A T, Binks B P. Growing a particle-stabilized aqueous foam[J]. Journal of Colloid and Interface Science, 2020, 561: 127-135.
doi: S0021-9797(19)31431-6
pmid: 31812859
|
[11] |
Friberg S E, Blute I, Kunieda H, et al. Stability of hydrophobic foams[J]. Langmuir, 1986, 2 (5) : 659-664.
|
[12] |
Tzoumaki, Maria V. Aqueous foams stabilized by chitin nanocrystals[J]. Soft Matter, 2015, 11 (31) : 6245-6253.
doi: 10.1039/c5sm00720h
pmid: 26154562
|
[13] |
Zuo L, Zhang Q, Sun C, et al. Molecular dynamics simulation and experiment on the microscopic mechanism of the effect of wax crystals on the burst and drainage of foams[J]. Sustainability, 2022, 14 (11) : 6778.
|
[14] |
Aveyard R, Binks B P, Clint J H. Emulsions stabilised solely by colloidal particles[J]. Advances in Colloid and Interface Science, 2003, 100: 503-546.
|
[15] |
Leal-Calderon F, Schmitt V. Solid-stabilized emulsions[J]. Current Opinion in Colloid & Interface Science, 2008, 13 (4) : 217-227.
|
[16] |
Pieranski P. Two-dimensional interfacial colloidal crystals[J]. Physical Review Letters, 1980, 45 (7) : 569-573.
|
[17] |
Wang Dongsheng, Wen Xin, Li Yunhui, et al. Grafting 9, 10-dihydro-9-oxa-10-phospha-phenanthrene-10-oxide on the surface of nano-silica and its effect on the flame retard-ancy and transparency of polymethyl methacrylate composites[J]. Chinese Journal of Applied Chemistry, 2018, 35 (12) : 1427-1433.
doi: 10.11944/j.issn.1000-0518.2018.12.180038
|
[18] |
Cao Yingying, Deng Xingyu, Chen Dandan, et al. Preparation process and application progress of SiO2[J]. Shandong Chemical Industry, 2019, 48 (5) : 51-52.
|
[19] |
Liu X, Zhou X, Kuang F, et al. Mechanical and tribological properties of nitrile rubber reinforced by nano-SiO2: molecular dynamics simulation[J]. Tribology Letters, 2021, 69 (2) : 1-11.
|
[20] |
Bahramnia H, Semnani H M, Habibolahzadeh A, et al. The effect of 3- (glycidoloxy propyl) trimethoxy silane concentration on surface modification of SiO2 nanoparticles[J]. Silicon, 2021, 14 (9) : 1-9.
|
[21] |
Teng Chunming, Zhen Jianwu, Luo Huiyi, et al. A strong adsorption hydrophobic modified nano-SiO2 plugging agent[J]. Drilling Fluid & Completion Fluid, 2022, 39 (3) : 307-312.
|
[22] |
Yang H, Zhao Q, Yue Q. Preparation and properties of cationic polyacrylamide flocculant for drilling fluid based on modified nano-SiO2[J]. Journal of Polymer Research, 2023, 30 (2) : 93-97.
|
[23] |
Horozov T S. Foams and foam films stabilised by solid particles[J]. Current Opinion in Colloid & Interface Science, 2008, 13 (3) : 134-140.
|
[24] |
Fernandez-Rodriguez M A, Binks B P, Rodriguez-Valverde M A, et al. Particles adsorbed at various non-aqueous liquid-liquid interfaces[J]. Advances in Colloid and Interface Science, 2017, 247 (9) : 208-222.
|
[25] |
Binks B P, Horozov T S. Aqueous foams stabilized solely by silica nanoparticles[J]. Angewandte Chemie International Edition, 2005, 44 (24) : 3722-3725.
|
[26] |
Binks B P, Duncumb B, Murakami R. Effect of pH and salt concentration on the phase inversion of particle-stabilized foams[J]. Langmuir, 2007, 23 (18) : 9143-9146.
pmid: 17683150
|
[27] |
Binks B P, Rocher A, Kirkland M. Oil foams stabilised solely by particles[J]. Soft Matter, 2011, 7 (5) : 1800-1808.
|
[28] |
Binks B P, Tyowua A T. Influence of the degree of fluorination on the behaviour of silica particles at air-oil surfaces[J]. Soft Matter, 2013, 9 (3) : 834-845.
|
[29] |
Dyab A K F, Al-Haque H N. Particle-stabilised non-aqueous systems[J]. Royal Society of Chemistry Advances, 2013, 3 (32) : 13101-13105.
|
[30] |
Chen J, Huang X, He L, et al. Foaming of oils: Effect of poly (dimethylsiloxanes) and silica nanoparticles[J]. American Chemical Society Omega, 2019, 4 (4) : 6502-6510.
|
[31] |
Zhang Yang. Study on the stabilization of non-aqueous foams by nano-silica[D]. Xi’an: Xi’an Shiyou University, 2020.
|