[1] |
Maranduca M A, Branisteanu D, Serban D N, et al. Synthesis and physiological implications of melanic pigments[J]. Oncology Letters, 2019, 17 (5) : 4183-4187.
doi: 10.3892/ol.2019.10071
pmid: 30944614
|
[2] |
Shoichet B K. Virtual screening of chemical libraries[J]. Nature, 2004, 432 (7019) : 862-865.
|
[3] |
Yamaguchi Y, Brenner M, Hearing V J. The regulation of skin pigmentation[J]. Journal of Biological Chemistry, 2007, 282 (38) : 27557-27561.
doi: 10.1074/jbc.R700026200
pmid: 17635904
|
[4] |
Hasegawa T. Tyrosinase-expressing neuronal cell line as in vitro model of Parkinson’s disease[J]. International Journal of Molecular Sciences, 2010, 11 (3) : 1082-1089.
|
[5] |
Pillaiyar T, Manickam M, Jung S. Downregulation of melanogenesis: drug discovery and therapeutic options[J]. Drug Discovery Today, 2017, 22 (2) : 282-298.
doi: S1359-6446(16)30340-3
pmid: 27693716
|
[6] |
Lai X, Wichers H J, Soler-Lopez M, et al. Structure and function of human tyrosinase and tyrosinase-related proteins[J]. Chemistry, 2018, 24 (1) : 47-55.
|
[7] |
Sanchez-Ferrer A, Rodriguez-Lopez J N, Garcia-Canovas F, et al. Tyrosinase: a comprehensive review of its mechanism[J]. Biochimica Biophysica Acta, 1995, 1247 (1) : 1-11.
|
[8] |
Li J, Feng L, Liu L, et al. Recent advances in the design and discovery of synthetic tyrosinase inhibitors[J]. European Journal of Medicinal Chemistry, 2021.
|
[9] |
Wang Y, Viennet C, Robin S, et al. Precise role of dermal fibroblasts on melanocyte pigmentation[J]. Journal of Dermatological Science, 2017, 88 (2) : 159-166.
doi: S0923-1811(17)30082-8
pmid: 28711237
|
[10] |
Xu W, Gong L, Haddad M M, et al. Regulation of microphthalmia-associated transcription factor mitf protein levels by association with the ubiquitin-conjugating enzyme hUBC9[J]. Experimental Cell Research, 2000, 255 (2) : 135-143.
pmid: 10694430
|
[11] |
Herraiz C, Garcia-Borron J C, Jimenez-Cervantes C, et al. MC1R signaling. Intracellular partners and pathophysiological implications[J]. Biochimica Biophysica Acta-Molecular Basis of Disease, 2017, 1863 (10) : 2448-2461.
|
[12] |
Azam M S, Kwon M, Choi J, et al. Sargaquinoic acid ameliorates hyperpigmentation through cAMP and ERK-mediated downregulation of MITF in alpha-MSH-stimulated B16F10 cells[J]. Biomed Pharmacother, 2018, 104: 582-589.
|
[13] |
Pillaiyar T, Manickam M, Jung S H. Recent development of signaling pathways inhibitors of melanogenesis[J]. Cellular Signalling, 2017, 40: 99-115.
doi: S0898-6568(17)30238-3
pmid: 28911859
|
[14] |
Song Kangkang. The effect of inhibitors on tyrosinase and the regulation of melanin production[D]. Xiamen: Xiamen University, 2007.
|
[15] |
VanGelder C W G, Flurkey W H, Wichers H J. Sequence and structural features of plant and fungal tyrosinases[J]. Phytochemistry, 1997, 45 (7) : 1309-1323.
pmid: 9237394
|
[16] |
Roulier B, Peres B, Haudecoeur R. Advances in the design of genuine human tyrosinase inhibitors for targeting melanogenesis and related pigmentations[J]. Journal of Medicinal Chemistry, 2020, 63 (22) : 13428-13443.
|
[17] |
Singh P, Pandey K M. Structural modeling of human tyrosinase protein using computational methods[J]. Biotechnological Research, 2016, 2 (1) : 15-24.
|
[18] |
Matoba Y, Kumagai T, Yamamoto A, et al. Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis[J]. Journal of Biological Chemistry, 2006, 281 (13) : 8981-8990.
doi: 10.1074/jbc.M509785200
pmid: 16436386
|
[19] |
Harir M, Bellahcene M, Baratto M C, et al. Isolation and characterization of a novel tyrosinase produced by Sahara soil actinobacteria and immobilization on nylon nanofiber membranes[J]. Journal of Biotechnology, 2018, 265: 54-64.
doi: S0168-1656(17)31737-6
pmid: 29133199
|
[20] |
Hsiao N W, Tseng T S, Lee Y C, et al. Serendipitous discovery of short peptides from natural products as tyrosinase inhibitors[J]. Journal of Chemical Information and Modeling, 2014, 54 (11) : 3099-3111.
|
[21] |
Tse T W. Hydroquinone for skin lightening: safety profile, duration of use and when should we stop[J]. Journal of Dermatological Treatment, 2010, 21 (5) : 272-275.
|
[22] |
Wang Xiaoqian. The ups and downs of arbutin-analysis of whitening ingredient arbutin[J]. Chinese Cosmetics, 2019 (10) : 85-87.
|
[23] |
He Min, Fan Meiyan, Yang Wei, et al. Research progress of kojic acid tyrosinase inhibitors[J]. Chemical Reagent, 2022, 44 (7) : 1001-1011.
|
[24] |
Yu J S, Kim A K. Effect of combination of taurine and azelaic acid on antimelanogenesis in murine melanoma cells[J]. Journal of Biomedical Science, 2010, 17: 1-5.
|
[25] |
Ullah S, Kang D, Lee S, et al. Synthesis of cinnamic amide derivatives and their anti-melanogenic effect in α-MSH-stimulated B16F10 melanoma cells[J]. European Journal of Medicinal Chemistry, 2019, 161: 78-92.
doi: S0223-5234(18)30887-0
pmid: 30347330
|
[26] |
Kamauchi H, Kinoshita K, Koyama K. Coumarins with anti-melanogenesis activities from a chemically engineered extract of a marine-derived fungus[J]. Heterocycles, 2018, 96 (2) : 273-285.
|
[27] |
Ujan R, Saeed A, Ashraf S, et al. Synthesis, computational studies and enzyme inhibitory kinetics of benzothiazole-linked thioureas as mushroom tyrosinase inhibitors[J]. Journal of Biomolecular Structure and Dynamics, 2021, 39 (18) : 7035-7043.
|
[28] |
Motiani R K, Tanwar J, Raja D A, et al. STIM1 activation of adenylyl cyclase 6 connects Ca2+ and cAMP signaling during melanogenesis[J]. Embo Journal, 2018, 37 (5).
|
[29] |
Pan C, Liu X, Zheng Y, et al. The mechanisms of melanogenesis inhibition by glabrid in: molecular docking, PKA/MITF and MAPK/MITF pathways[J]. Food Science and Human Wellness, 2023, 12 (1) : 212-222.
|
[30] |
Kim B, Lee S, Choi K, et al. N-nicotinoyl tyramine, a novel niacinamide derivative, inhibits melanogenesis by suppressing MITF gene expression[J]. European Journal of Pharmacology, 2015, 764: 1-8.
doi: S0014-2999(15)30001-7
pmid: 26118836
|
[31] |
Nishio T, Usami M, Awaji M, et al. Dual effects of acetylsalicylic acid on ERK signaling and MITF transcription leads to inhibition of melanogenesis[J]. Molecular and Cellular Biochemistry, 2016, 412(1-2) : 101-110.
|
[32] |
Villareal M O, Chaochaiphat T, Makbal R, et al. Molecular analysis of the melanogenesis inhibitory effect of saponins-rich fraction of argania spinosa leaves extract[J]. Molecules, 2022, 27 (19) : 6762.
|
[33] |
Jeon G, Ro H S, Kim G R, et al. Enhancement of melanogenic inhibitory effects of the leaf skin extracts of Aloe barbadensis Miller by the fermentation process[J]. Fermentation, 2022, 8 (11) : 580.
|
[34] |
Li Tingting, Zhou Yan, Yin Mingdan, et al. Based on the PKC/CREB/MITF pathway, the effects of resveratrol on the proliferation and melanin synthesis of human melanocytes after ultraviolet irradiation were investigated[J]. Occupation and Health, 2022, 38 (22) : 3054-3060.
|
[35] |
Dhillon A S, Hagan S, Rath O, et al. MAPK kinase signalling pathways in cancer[J]. Oncogene, 2007, 26 (22) : 3279-3290.
doi: 10.1038/sj.onc.1210421
pmid: 17496922
|
[36] |
Chen S, Han C, Miao X, et al. Targeting MC1R depalmitoylation to prevent melanomagenesis in redheads[J]. Nat. Commun., 2019, 10 (1): 877.
doi: 10.1038/s41467-019-08691-3
pmid: 30787281
|
[37] |
Park S, Morya V K, Nguyen D H, et al. Unrevealing the role of P-protein on melanosome biology and structure, using siRNA-mediated down regulation of OCA2[J]. Mol. Cell Biochem., 2015, 403 (1-2) : 61-71.
doi: 10.1007/s11010-015-2337-y
pmid: 25656818
|
[38] |
Zhu Jun, Ji Chong, Qiu Jing, et al. Application progress of virtual screening in the discovery of cosmetic efficacy raw materials[J]. Journal of Light Industry, 2023, 38 (1) : 119-126.
|
[39] |
Bagherzadeh K, Talari F S, Sharifi A, et al. A new insight into mushroom tyrosinase inhibitors: docking, pharmacophore-based virtual screening, and molecular modeling studies[J]. Journal of Biomolecular Structure & Dynamics, 2015, 33 (3) : 487-501.
|
[40] |
Choi J, Lee Y M, Jee J G. Thiopurine drugs repositioned as tyrosinase inhibitors[J]. International Journal of Molecular Sciences, 2017, 19 (1) : 77.
|
[41] |
Choi J, Choi K E, Park S J, et al. Ensemble-based virtual screening led to the discovery of new classes of potent tyrosinase inhibitors[J]. Journal of Chemical Information and Modeling, 2016, 56 (2) : 354-367.
doi: 10.1021/acs.jcim.5b00484
pmid: 26750991
|
[42] |
Vittorio S, Seidel T, German M P, et al. A Combination of pharmacophore and docking‐based virtual screening to discover new tyrosinase inhibitors[J]. Molecular Informatics, 2020, 39 (3) : 1900054.
|
[43] |
Lim D, Lee K J, Kim Y, et al. A basic domain-derived tripeptide inhibits MITF activity by reducing its binding to the promoter of genes[J]. Journal of Investigative Dermatology, 2021, 141 (10) : 2459-2469.
|
[44] |
Guo D, Lui G Y L, Lai S L, et al. RAB27A promotes melanoma cell invasion and metastasis via regulation of pro‐invasive exosomes[J]. International Journal of Cancer, 2019, 144 (12) : 3070-3085.
|
[45] |
Joung J Y, Lee H Y, Park J, et al. Identification of novel rab27a/melanophilin blockers by pharmacophore based virtual screening[J]. Applied Biochemistry and Biotechnology, 2014, 172 (4) : 1882-1897.
|
[46] |
Visser M, Kayser M, Grosveld F, et al. Genetic variation in regulatory DNA elements: the case of OCA2 transcriptional regulation[J]. Pigment Cell & Melanoma Research, 2014, 27 (2).
|
[47] |
Morya V K, Dung N H, Singh B K, et al. Homology modelling and virtual screening of P-protein in a quest for novel antimelanogenic agent and In vitro assessments[J]. Experimental Dermatology, 2014, 23 (11) : 838-842.
doi: 10.1111/exd.12549
pmid: 25236473
|
[48] |
Li Q, Yang H Y, Mo J, et al. Identification by shape-based virtual screening and evaluation of new tyrosinase inhibitors[J]. PeerJ, 2018, 6: 4206.
doi: 10.7717/peerj.4206
pmid: 29383286
|
[49] |
Bo W C, Chen L, Qin D Y, et al. Application of quantitative structure-activity relationship to food-derived peptides: Methods, situations, challenges and prospects[J]. Trends in Food Science & Technology, 2021, 114: 176-188.
|
[50] |
Gao H W. Predicting tyrosinase inhibition by 3D QSAR pharmacophore models and designing potential tyrosinase inhibitors from traditional Chinese medicine database[J]. Phytomedicine, 2018, 38: 145-157.
doi: S0944-7113(17)30173-3
pmid: 29425647
|