日用化学工业 ›› 2021, Vol. 51 ›› Issue (9): 881-889.doi: 10.3969/j.issn.1001-1803.2021.09.011
收稿日期:
2020-11-30
修回日期:
2021-08-30
出版日期:
2021-09-22
发布日期:
2021-09-23
通讯作者:
高艳
Che Biao,Gao Yan(),Xiao Lei,Huang Jinlian
Received:
2020-11-30
Revised:
2021-08-30
Online:
2021-09-22
Published:
2021-09-23
Contact:
Yan Gao
摘要:
从口腔溃疡的信号传导和相关因子的角度对近期文献进行综述,为研究和治疗口腔溃疡提供理论参考。口腔溃疡的致病机制涉及诸多诱导因素和信号通路。外界的信号因子、机体的免疫因子、细胞表面的受体分子、细胞内的信号传递等众多因素,以及它们相关信号通路在口腔粘膜中的变化,在口腔溃疡的发展和愈合过程中发挥着不同的作用。本文从TGF-β、Smad7、FOXO1、TNF-α、IL-17、NO和ROS、JNK,以及靶向治疗药物和免疫检查点抑制剂等角度,对目前在口腔溃疡的致病及修复机制中相关因子和信号通路的研究进展进行了综述。它们之间的相互影响说明需要在炎症反应和组织修复之间达到平衡才能促进口腔溃疡愈合,例如ROS/NO经由PGE2加重炎症反应,还可经由JNK/TGF-β途径促进细胞增殖和迁移以进行修复;TNF-α除了促进T细胞产生各种炎症因子,还经由JNK/c-Jun途径促进胶原和MMPs合成以帮助组织修复;Smad7和IL-17则参与抑制炎症反应和促进细胞分泌抗菌物质。因而平衡免疫系统可能是未来口腔溃疡药物的研究方向。
中图分类号:
车飙,高艳,肖蕾,黄金莲. 口腔溃疡相关因子的研究进展[J]. 日用化学工业, 2021, 51(9): 881-889.
Che Biao,Gao Yan,Xiao Lei,Huang Jinlian. Research progress of related factors in oral ulcers[J]. China Surfactant Detergent & Cosmetics, 2021, 51(9): 881-889.
[1] |
Patil C S, Kirkwood K L. p38 MAPK signaling in oral-related diseases[J]. Journal of Dental Research, 2007, 86(9): 812-825.
pmid: 17720848 |
[2] | Lifshitz V, Frenkel D. Chapter 225-TGF-β. Handbook of biologically active peptides (Second Edition) [M]. Academic Press, 2013: 1647-1653. |
[3] | Bian L, Han G W, Zhao C W, et al. The role of Smad7 in oral mucositis[J]. Protein & Cell, 2015, 6(3): 160-169. |
[4] |
Zheng Y, Xuan K, Nan L, et al. Effects of hirudin on the expression of basic fibroblast growth factor and transforming growth factor-β1 in human gingival fibroblasts[J]. West China Journal of Stomatology, 2015, 33(1): 6-10.
pmid: 25872290 |
[5] | Rakheerathnam K K, Ranganathan K, Devaraj S N. Cross-talk of TGF-β and Wnt/β-catenin pathways leading to epithelial mesenchymal transition in oral submucous fibrosis in Indian population[J]. Journal of Global Oncology, 2018, 4(Supplement 2): 203-207. |
[6] |
Groeger S, Meyle J. Oral mucosal epithelial cells[J]. Frontiers in Immunology, 2019, 10:1-22.
doi: 10.3389/fimmu.2019.00001 |
[7] |
Lu S L, Reh D, Li A G, et al. Overexpression of transforming growth factor beta 1 in head and neck epithelia results in inflammation, angiogenesis, and epithelial hyperproliferation[J]. Cancer Research, 2004, 64(13): 4405-4410.
doi: 10.1158/0008-5472.CAN-04-1032 |
[8] |
Wang X J, Han G, Owens P, et al. Role of TGF beta-mediated inflammation in cutaneous wound healing[J]. Journal of Investigative Dermatology Symposium Proceedings, 2006, 11(1): 112-117.
doi: 10.1038/sj.jidsymp.5650004 |
[9] | Sun Q, Guo S, Wang C C, et al. Cross-talk between TGF-β/Smad pathway and Wnt/β-catenin pathway in pathological scar formation[J]. International Journal of Clinical and Experimental Pathology, 2015, 8(6): 7631-9. |
[10] |
Han G, Bian L, Li F, et al. Preventive and therapeutic effects of Smad7 on radiation-induced oral mucositis[J]. Nature Medicine, 2013, 19(4): 421-428.
doi: 10.1038/nm.3118 |
[11] | Xu Y Y, Xu H X, Su Z L. The immunoregulatory effects of rac1 and its relationship with disease[J]. International Journal of Immunology, 2015, 38(1): 31-34. |
[12] |
Wang W, Huang X R, Li A G, et al. Signaling mechanism of TGF-β1 in prevention of renal inflammation: role of Smad7[J]. Journal of the American Society of Nephrology, 2005, 16(5): 1371-1383.
doi: 10.1681/ASN.2004121070 |
[13] |
Hong S, Lim S, Li A G, et al. Smad7 binds to the adaptors TAB2 and TAB3 to block recruitment of the kinase TAK1 to the adaptor TRAF2[J]. Nature Immunology, 2007, 8(5): 504-513.
doi: 10.1038/ni1451 |
[14] |
Ekman M, Mu Y, Lee S Y, et al. APC and Smad7 link TGF beta type I receptors to the microtubule system to promote cell migration[J]. Molecular Biology of the Cell, 2012, 23(11): 2109-2121.
doi: 10.1091/mbc.e10-12-1000 |
[15] | Graves D T, Milovanova T. Mucosal immunity and the FOXO1 transcription factors[J]. Frontiers in Immunology, 2019, 10. |
[16] | Li S, Dong G, Moschidis A, et al. P-gingivalis modulates keratinocytes through FOXO transcription factors[J]. PloS One, 2013, 8(11): 78541. |
[17] |
Wang Q, Sztukowska M, Ojo A, et al. FOXO responses to porphyromonas gingivalis in epithelial cells[J]. Cellular Microbiology, 2015, 17(11): 1605-1617.
doi: 10.1111/cmi.12459 |
[18] |
Ponugoti B, Xu F, Zhang C, et al. FOXO1 promotes wound healing through the up-regulation of TGF-beta 1 and prevention of oxidative stress[J]. Journal of Cell Biology, 2013, 203(2): 327-343.
doi: 10.1083/jcb.201305074 pmid: 24145170 |
[19] | Ji Fanxing. Impacts of FOXO1 and periopathogens on oral mucosal wound healing[D]. Daling: Dalian University of Technology, 2014. |
[20] |
Zhang C, Lim J, Liu J, et al. FOXO1 expression in keratinocytes promotes connective tissue healing[J]. Scientific Reports, 2017, 7:42834.
doi: 10.1038/srep42834 |
[21] |
Nikoloudaki G, Brooks S, Peidl A P, et al. JNK signaling as a key modulator of soft connective tissue physiology, pathology, and healing[J]. International Journal of Molecular Sciences, 2020, 21(3): 1015.
doi: 10.3390/ijms21031015 |
[22] |
Javelaud D, Laboureau J, Gabison E, et al. Disruption of basal JNK activity differentially affects key fibroblast functions important for wound healing[J]. The Journal of Biological Chemistry, 2003, 278(27): 24624-24628.
doi: 10.1074/jbc.M301942200 |
[23] |
Verrecchia F, Pessah M, Atfi A, et al. Tumor necrosis factor-alpha inhibits transforming growth factor-beta/Smad signaling in human dermal fibroblasts via AP-1 activation[J]. Journal of Biological Chemistry, 2000, 275(39): 30226-30231.
pmid: 10903323 |
[24] | Dai J P, Chen X X, Zhu D X, et al. Preliminary study of the mechanism of elephant tusk powder on the wound healing[J]. Journal of Guangdong Pharmaceutical University, 2013, 29(6): 646-652. |
[25] |
Vila T, Sultan A S, Montelongo-Jauregui D, et al. Oral candidiasis: A disease of opportunity[J]. Journal of Fungi, 2020, 6(1): 1-28.
doi: 10.3390/jof6010001 |
[26] |
Feller L, Khammissa R A G, Chandran R, et al. Oral candidosis in relation to oral immunity[J]. Journal of Oral Pathology and Medicine, 2014, 43(8): 563-569.
doi: 10.1111/jop.12120 pmid: 24118267 |
[27] |
Conti H R, Gaffen S L. Host responses to candida albicans: Th17 cells and mucosal candidiasis[J]. Microbes and Infection, 2010, 12(7): 518-527.
doi: 10.1016/j.micinf.2010.03.013 |
[28] |
Conti H R, Shen F, Nayyar N, et al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis[J]. Journal of Experimental Medicine, 2009, 206(2): 299-311.
doi: 10.1084/jem.20081463 |
[29] |
Khader S A, Gaffen S L, Kolls J K. Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa[J]. Mucosal Immunology, 2009, 2(5): 403-411.
doi: 10.1038/mi.2009.100 pmid: 19587639 |
[30] |
Slomiany B L, Slomiany A. Activation of peroxisome proliferator-activated receptor gamma suppresses inducible cyclooxygenase and nitric oxide synthase during oral mucosal ulcer healing[J]. Journal of Physiology and Pharmacology, 2002, 53(2): 159-169.
pmid: 12120893 |
[31] |
Elting L S, Keefe D M, Sonis S T, et al. Patient-reported measurements of oral mucositis in head and neck cancer patients treated with radiotherapy with or without chemotherapy demonstration of increased frequency, severity, resistance to palliation, and impact on quality of life[J]. Cancer, 2008, 113(10): 2704-2713.
doi: 10.1002/cncr.23898 pmid: 18973181 |
[32] |
Chung Y L, Pui N N M. Dynamics of wound healing signaling as a potential therapeutic target for radiation-induced tissue damage[J]. Wound Repair and Regeneration, 2015, 23(2): 278-286.
doi: 10.1111/wrr.2015.23.issue-2 |
[33] |
Cheki M, Yahyapour R, Farhood B, et al. COX-2 in radiotherapy: A potential target for radioprotection and radiosensitization[J]. Current Molecular Pharmacology, 2018, 11(3): 173-183.
doi: 10.2174/1874467211666180219102520 |
[34] |
Haagen J, Krohn H, Roellig S, et al. Effect of selective inhibitors of inflammation on oral mucositis: Preclinical studies[J]. Radiotherapy and Oncology, 2009, 92(3): 472-476.
doi: 10.1016/j.radonc.2009.06.006 pmid: 19576646 |
[35] |
Frings K, Gruber S, Kuess P, et al. Modulation of radiation-induced oral mucositis by thalidomide[J]. Strahlentherapie und Onkologie, 2016, 192(8): 561-568.
doi: 10.1007/s00066-016-0989-5 |
[36] | Chen C F, Yu B, Hu X P. Research progress of Dectin-1 receptor signaling pathway[J]. Journal of Diagnosis and Therapy on Dermato-venereology, 2016, 23(5): 358-361. |
[37] | Mao Yanan. The Effect of immunosuppressors on Zymosan A-induced Decctin-1/TLR2 signaling pathway in RAW264.7 cells[D]. Anhui: Anhui Medical University, 2016. |
[38] |
Cloutier A, Ear T, Borissevitch O, et al. Inflammatory cytokine expression is independent of the c-Jun N-terminal kinase/AP-1 signaling cascade in human neutrophils[J]. Journal of Immunology, 2003, 171(7): 3751-3761.
doi: 10.4049/jimmunol.171.7.3751 |
[39] |
Lue H, Dewor M, Leng L, et al. Activation of the JNK signalling pathway by macrophage migration inhibitory factor (MIF) and dependence on CXCR4 and CD74[J]. Cellular Signalling, 2011, 23(1): 135-144.
doi: 10.1016/j.cellsig.2010.08.013 |
[40] |
Lagares D, Ana G R, Lopez J C, et al. Endothelin 1 contributes to the effect of transforming growth factor beta 1 on wound repair and skin fibrosis[J]. Arthritis and Rheumatism, 2010, 62(3): 878-889.
doi: 10.1002/art.27307 pmid: 20131241 |
[41] |
Dolivo D M, Larson S A, Dominko T. Crosstalk between mitogen-activated protein kinase inhibitors and transforming growth factor-beta signaling results in variable activation of human dermal fibroblasts[J]. International Journal of Molecular Medicine, 2019, 43(1): 325-335.
doi: 10.3892/ijmm.2018.3949 pmid: 30365043 |
[42] |
Wang F M, Hu Z, Liu X, et al. Resveratrol represses tumor necrosis factor alpha/c-Jun N-terminal kinase signaling via autophagy in human dental pulp stem cells[J]. Archives of Oral Biology, 2019, 97:116-121.
doi: 10.1016/j.archoralbio.2018.10.020 |
[43] |
Lacouture M, Sibaud V. Toxic side effects of targeted therapies and immunotherapies affecting the skin, oral mucosa, hair, and nails[J]. American Journal of Clinical Dermatology, 2018, 19:31-39.
doi: 10.1007/s40257-018-0384-3 pmid: 30374901 |
[44] | Peterson D E, Boers-Doets C B, Bensadoun R J, et al. Management of oral and gastrointestinal mucosal injury: ESMO Clinical Practice Guidelines for diagnosis, treatment, and follow-up(aEuro)[J]. Annals of Oncology, 2015, 26:139-151. |
[45] |
Sibaud V, Boralevi F, Vigarios E, et al. Oral toxicity of targeted anticancer therapies[J]. Ann. Dermatol. Venereol., 2014, 141(5): 354-363.
doi: 10.1016/j.annder.2014.03.009 |
[46] |
Sibaud V, Eid C, Belum V R, et al. Oral lichenoid reactions associated with anti-PD-1/PD-L1 therapies: clinicopathological findings[J]. Journal of the European Academy of Dermatology and Venereology, 2017, 31(10): 464-469.
doi: 10.1111/jdv.14284 pmid: 28419570 |
[47] |
Vigarios E, Epstein J B, Sibaud V. Oral mucosal changes induced by anticancer targeted therapies and immune checkpoint inhibitors[J]. Supportive Care in Cancer, 2017, 25(5): 1713-1739.
doi: 10.1007/s00520-017-3629-4 |
[48] |
Moutsopoulos N M, Konkel J E. Tissue-specific immunity at the oral mucosal barrier[J]. Trends in Immunology, 2018, 39(4): 276-287.
doi: S1471-4906(17)30169-2 pmid: 28923364 |
[49] | Silva P G D B, Codes R B B D, Freitas M O, et al. Experimental model of oral ulcer in mice: Comparing wound healing in three immunologically distinct animal lines[J]. Journal of Oral and Maxillofacial Pathology: JOMFP, 2018, 22(3). |
[1] | 孙锦月, 武楠楠, 张瑜, 何华名, 何聪芬. 基于网络药理学探讨罗勒抗炎抗菌分子机制[J]. 日用化学工业(中英文), 2023, 53(1): 54-61. |
[2] | 吴亚妮,吕晓帆,王莹,唐寅. 苦水玫瑰精油对B16细胞中黑色素合成的影响及机制研究[J]. 日用化学工业, 2022, 52(3): 278-286. |
[3] | 任倩倩,吴华,金建明. 化妆品植物原料(IV)——抑制黑色素合成信号通路的植物美白原料的研究与开发[J]. 日用化学工业, 2021, 51(7): 590-597. |
|