欢迎访问《日用化学工业(中英文)》,今天是

日用化学工业(中英文) ›› 2025, Vol. 55 ›› Issue (12): 1560-1566.doi: 10.3969/j.issn.2097-2806.2025.12.008

• 基础研究 • 上一篇    下一篇

耐高温海水基植物胶压裂液交联动力学及其交联机理研究

赵健1,2,*(),郭布民1,2,申金伟1,2,王黎3,许田鹏1,2,鲍文辉1,2   

  1. 1 中海油田服务股份有限公司 油田生产事业部天津 300459
    2 天津市海洋石油难动用储量开采企业重点实验室天津 300459
    3 中海油研究总院有限责任公司北京 100028
  • 收稿日期:2024-12-07 修回日期:2025-12-31 出版日期:2025-12-22 发布日期:2026-01-23
  • 基金资助:
    中国海洋石油集团有限公司“十四五”科技重大专项:海上低渗透及潜山油气田有效开发技术(KJGG2022);海上大型压裂工程技术(KJGG2022-0704)

Study on the mechanism and kinetics of crosslinking in high-temperature-resistant seawater-based plant gum fracturing fluid

Jian Zhao1,2,*(),Bumin Guo1,2,Jinwei Shen1,2,Li Wang3,Tianpeng Xu1,2,Wenhui Bao1,2   

  1. 1 Production Optimization Department, China Oilfield Services Limited, Tianjin 300459, China
    2 Tianjin Key Enterprises Laboratory of Offshore Oil Reserves Exploitation, Tianjin 300459, China
    3 CNOOC Research Institute Company Limited, Beijing 100028, China
  • Received:2024-12-07 Revised:2025-12-31 Online:2025-12-22 Published:2026-01-23
  • Contact: *E-mail: zhaojian12@cosl.com.cn.

摘要: 为满足海水配制压裂液对延迟交联和耐高温的应用需求,通过耐盐瓜胶和高温交联剂等配比优化构建了系列温度海水基压裂液体系,实现了低pH值下交联时间可控,体系最高耐温达180 ℃。通过稳态剪切流变实验对压裂液交联过程进行测试,并采用Cross模型4-参数流变动力学方程对数据进行拟合,分析了交联剂含量、螯合调节剂含量、剪切速率、温度对交联过程的影响。结果表明:提高交联剂含量和交联温度可以加速交联过程,提高交联体系强度;交联过程的剪切速率和螯合调节剂用量存在最优区间。通过对交联冻胶微观结构和交联过程元素含量测量,进一步分析了交联机理。交联剂粒子尺寸的差异和硼锆配位比的不同会影响交联时间和冻胶网络结构,实现了海水基压裂液延迟交联、低温交联强度高、二次交联提升耐温能力等性能。

关键词: 海水基压裂液, 耐高温, 高温交联剂, 交联动力学, 交联机理

Abstract:

To meet the application requirements of seawater-based fracturing fluid for delayed crosslinking and high temperature resistance, a series of seawater-based fracturing fluids applicable in different temperature range were formulated by optimizing the ratios among salt-resistant guar gum, high-temperature crosslinking agent, etc., achieving controllable crosslinking time at low pH and a maximum temperature resistance of 180 ℃. The crosslinking process of fracturing fluids was tested through steady-state shear rheological experiments, and a 4-parameter rheological kinetic equation was used to fit the data. The effects of crosslinking agent concentration, chelating agent concentration, shear rate, and temperature on the crosslinking process were analyzed. Both increasing the concentration of crosslinking agent and increasing the crosslinking temperature could accelerate the crosslinking process and enhance the strength of the crosslinking system; there were optimal ranges for both shear rate and chelating agent dosage in the crosslinking process. The crosslinking mechanism was further analyzed by measuring the microstructure of cross-linked gel and the elemental content during the crosslinking process. The difference in particle size and the different coordination number between boron and zirconium in crosslinking agents could affect crosslinking time and gel network structure, achieving delayed crosslinking, high crosslinking strength at low temperature, and improved temperature resistance through secondary crosslinking for seawater-based fracturing fluids.

Key words: seawater-based fracturing fluid, high-temperature resistance, high-temperature crosslinking agent, crosslinking kinetics, crosslinking mechanism

中图分类号: 

  • TE357