日用化学工业(中英文) ›› 2025, Vol. 55 ›› Issue (11): 1361-1377.doi: 10.3969/j.issn.2097-2806.2025.11.001
• 特邀专稿 • 下一篇
收稿日期:2025-09-01
修回日期:2025-09-29
出版日期:2025-11-22
发布日期:2025-12-22
基金资助:Received:2025-09-01
Revised:2025-09-29
Online:2025-11-22
Published:2025-12-22
摘要:
G-四联体作为一种由DNA或RNA折叠形成的独特核酸二级结构,与生命活动密切相关。具有丰富作用位点以及优异性质的G-四联体发挥了重要作用。因此,近几十年来,G-四联体受到了广泛的关注。核磁共振技术(NMR)作为一种表征物质结构的有力工具,在探究G-四联体的组装过程当中有重要应用。文章从核磁共振技术的基本概念出发,介绍了几种常用核磁共振实验方法,总结了NMR技术在表征G-四联体结构方面的应用,并对其在G-四联体领域中新的应用做出展望。
中图分类号:
王泽奕, 董姝丽. G-四联体研究中的核磁共振技术[J]. 日用化学工业(中英文), 2025, 55(11): 1361-1377.
Zeyi Wang, Shuli Dong. Nuclear magnetic resonance studies of G-quadruplex[J]. China Surfactant Detergent & Cosmetics, 2025, 55(11): 1361-1377.
"
| 1H NMR | 11B NMR | 23Na NMR | |
|---|---|---|---|
| Charge distribution | Spherical symmetry | Asymmetry (significant electric quadrupole moment) | Moderate asymmetry (moderate electric quadrupole moment) |
| Relaxion | Dominated by T1 | Enhanced T2 relaxation due to quadrupolar interactions | Enhanced T2 relaxation due to quadrupolar interactions |
| Linewidth | Narrow | Broad | Very broad |
| Detection sensitivity | High | Low | Medium |
| Experimental requirements | Conventional solution-state NMR | Solution-state NMR or solid-state NMR | Solid-state NMR |
| Typical applications | Confirm the formation of G-quadruplex | Confirm the formation of guanosine borate derivatives and analyze the gelation mechanism | Ascertain the binding sites of Na+ |
| [1] | Bang I. Über die Guanylsäure[J]. Biological Chemistry, 1910, 69 (2) : 167-168. |
| [2] | Gellert M, Lipsett M N, Davies D R. Helix formation by guanylic acid[J]. Proceedings of the National Academy of Sciences of the United States of America, 1962, 48 (12) : 2013-2018. |
| [3] | Davis J T. G-Quartets 40 years later: From 5′-GMP to molecular biology and supramolecular chemistry Angewandte Chemie International Edition, 2004, 43 (6) : 668-698. |
| [4] | Bhattacharyya D, Mirihana Arachchilage G, Basu S. Metal cations in G-quadruplex folding and stability[J]. Frontiers in Chemistry, 2016, 4: 1-14. |
| [5] |
Ciesielski A, Lena S, Masiero S, et al. Dynamers at the solid-liquid interface: controlling the reversible assembly/reassembly process between two highly ordered supramolecular guanine motifs[J]. Angewandte Chemie International Edition, 2010, 49 (11) : 1963-1966.
doi: 10.1002/anie.v49:11 |
| [6] |
Wang X, Zhou L, Wang H, et al. Reversible organogels triggered by dynamic K+ binding and release[J]. Journal of Colloid and Interface Science, 2011, 353 (2) : 412-419.
doi: 10.1016/j.jcis.2010.09.089 |
| [7] | Rajagopal S K, Hariharan M. Non-natural G-quadruplex in a non-natural environment[J]. Photochemical & Photobiological Sciences, 2014, 13 (2) : 157-161. |
| [8] |
Zhao C, Qu X. Recent progress in G-quadruplex DNA in deep eutectic solvent[J]. Methods, 2013, 64 (1) : 52-58.
doi: 10.1016/j.ymeth.2013.04.017 pmid: 23628945 |
| [9] |
Chen X C, Chen S B, Dai J, et al. Tracking the dynamic folding and unfolding of RNA G-quadruplexes in live cells[J]. Angewandte Chemie International Edition, 2018, 57 (17) : 4702-4706.
doi: 10.1002/anie.v57.17 |
| [10] | Criscuolo A, Napolitano E, Riccardi C, et al. Insights into the small molecule targeting of biologically relevant G-quadruplexes: An overview of NMR and crystal structures[J]. Pharmaceutics, 2022, 14 (11) : 2361. |
| [11] |
Ou T M, Lu Y J, Tan, J H, et al. G-quadruplexes: Targets in anticancer drug design[J]. ChemMedChem, 2008, 3 (5) : 690-713.
doi: 10.1002/cmdc.v3:5 |
| [12] |
Oganesian L, Graham M E, Robinson P J, et al. Telomerase recognizes G-quadruplex and linear DNA as distinct substrates[J]. Biochemistry, 2007, 46 (40) : 11279-11290.
pmid: 17877374 |
| [13] | Alessandrini I, Recagni M, Zaffaroni N, et al. On the road to fight cancer: The potential of G-quadruplex ligands as novel therapeutic agents[J]. International Journal of Molecular Sciences, 2021, 22 (11) : 5947. |
| [14] |
Merlino F, Marzano S, Zizza P, et al. Unlocking the potential of protein-derived peptides to target G-quadruplex DNA: from recognition to anticancer activity[J]. Nucleic Acids Research, 2024, 52 (12) : 6748-6762.
doi: 10.1093/nar/gkae471 pmid: 38828773 |
| [15] | Godoy-Gallardo M, Merino-Gómez M, Matiz L C, et al. Nucleoside-based supramolecular hydrogels: From synthesis and structural properties to biomedical and tissue engineering applications[J]. ACS Biomaterials Science & Engineering, 2023, 9 (1) : 40-61. |
| [16] | Gu C, Xie X Q, Liang Y, et al. Small molecule-based supramolecular-polymer double-network hydrogel electrolytes for ultra-stretchable and waterproof Zn-air batteries working from -50 to 100 ℃[J]. Energy & Environmental Science, 2021, 14 (8) : 4451-4462. |
| [17] |
Thakur N, Chaudhary A, Chakraborty A, et al. Ion conductive phytic acid-G quadruplex hydrogel as electrolyte for flexible electrochromic device[J]. ChemNanoMat, 2021, 7 (6) : 613-619.
doi: 10.1002/cnma.202100072 |
| [18] |
Zhang X, Tang Y, Luo N, et al. Covalently cross-linked supramolecular-polymer dual-network hydrogel with high ionic conductivity and interfacial adhesion for wide temperature-tolerant flexible zinc-air batteries[J]. ACS Applied Polymer Materials, 2024, 6 (9) : 5011-5020.
doi: 10.1021/acsapm.3c03128 |
| [19] | Cho S K, Lee K M, Kang S H, et al. Ion slippage through Li+-centered G-quadruplex[J]. Science Advances, 2022, 8 (37) : eabp8751. |
| [20] |
Kaucher M S, Harrell W A, Davis J T. A unimolecular G-quadruplex that functions as a synthetic transmembrane Na+ transporter[J]. Journal of the American Chemical Society, 2006, 128 (1) : 38-39.
pmid: 16390110 |
| [21] |
Forman S L, Fettinger J C, Pieraccini S, et al. Toward artificial ion channels: A lipophilic G-quadruplex[J]. Journal of the American Chemical Society, 2000, 122 (17) : 4060-4067.
doi: 10.1021/ja9925148 |
| [22] |
Ghosh S, Ghosh T, Bhowmik S, et al. Nucleopeptide-coupled injectable bioconjugated guanosine-quadruplex hydrogel with inherent antibacterial activity[J]. ACS Applied Bio Materials, 2023, 6 (2) : 640-651.
doi: 10.1021/acsabm.2c00912 |
| [23] |
Wu C G, Wang X, Shi Y F, et al. Transforming sustained release into on-demand release: self-healing guanosine-borate supramolecular hydrogels with multiple responsiveness for Acyclovir delivery[J]. Biomaterials Science, 2020, 8 (22) : 6190-6203.
doi: 10.1039/D0BM00966K |
| [24] |
Rit T, Ghosh T, Bhowmik S, et al. Dynamic multicomponent reactions-directed self-assembled G-quadruplex inherent antibacterial hydrogel[J]. Langmuir, 2023, 39 (18) : 6466-6475.
doi: 10.1021/acs.langmuir.3c00392 |
| [25] |
Feng L, Wang H, Liu T, et al. Ultrasensitive and highly selective detection of strontium ions[J]. Nature Sustainability, 2023, 6 (7) : 789-796.
doi: 10.1038/s41893-023-01095-8 |
| [26] |
Sardaru M C, Rosca I, Ursu C, et al. Photothermal hydrogel composites featuring G4-carbon nanomaterial networks for staphylococcus aureus inhibition[J]. ACS Omega, 2024, 9 (14) : 15833-15844.
doi: 10.1021/acsomega.3c07724 |
| [27] |
Chen J, Gao C, Zhang Z, et al. Kinetic control of chirality and circularly polarized luminescence in G-quartet materials[J]. Journal of Materials Chemistry B, 2021, 9 (35) : 7140-7144.
doi: 10.1039/d1tb00683e pmid: 34008691 |
| [28] | Dai Y, Zhang Z, Wang D, et al. Machine-learning-driven G-quartet-based circularly polarized luminescence materials[J]. Advanced Materials, 2024, 36 (4) : e2310455. |
| [29] |
Chen J, Liu X, Suo Z, et al. Right-/left-handed helical G-quartet nanostructures with full-color and energy transfer circularly polarized luminescence[J]. Chemical Communications, 2020, 56 (56) : 7706-7709.
doi: 10.1039/d0cc02449j pmid: 32609116 |
| [30] |
Qi P, Yi M, Song A, et al. Guanine analogue-based assemblies: construction and luminescence functions[J]. Langmuir, 2022, 38 (23) : 7099-7106.
doi: 10.1021/acs.langmuir.2c00705 pmid: 35648843 |
| [31] |
Qi P, Li X, Huang Z, et al. G-quadruplex-based ionogels with controllable chirality for circularly polarized luminescence[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629: 127411.
doi: 10.1016/j.colsurfa.2021.127411 |
| [32] | Dai Y, Chen J, Zhao C et al. Biomolecule-based circularly polarized luminescent materials: Construction, progress, and applications[J]. Angewandte Chemie International Edition, 2022, 61 (47) : e202211822. |
| [33] |
Yi M, Huang Z, Qi P, et al. Sr2+-Triggered phase transitions from chiral thermotropic liquid crystalline to G-quadruplex CTLC with circularly polarized luminescence[J]. The Journal of Physical Chemistry C, 2021, 125 (35) : 19570-19579.
doi: 10.1021/acs.jpcc.1c06178 |
| [34] |
Adrian M, Heddi B, Phan A T. NMR spectroscopy of G-quadruplexes[J]. Methods, 2012, 57 (1) : 11-24.
doi: 10.1016/j.ymeth.2012.05.003 pmid: 22633887 |
| [35] | Masiero S, Trotta R, Pieraccini S, et al. A non-empirical chromophoric interpretation of CD spectra of DNA G-quadruplex structures[J]. Organic & Biomolecular Chemistry, 2010, 8 (12) : 2683-2692. |
| [36] |
Gray D M, Wen J D, Gray C W, et al. Measured and calculated CD spectra of G-quartets stacked with the same or opposite polarities[J]. Chirality, 2008, 20 (3/4): 431-440.
doi: 10.1002/chir.v20:3/4 |
| [37] |
Liu X, Yu Q, Song A, et al. Progress in nuclear magnetic resonance studies of surfactant systems[J]. Current Opinion in Colloid & Interface Science, 2020, 45: 14-27.
doi: 10.1016/j.cocis.2019.10.006 |
| [38] |
Xia X, Song S, Wen Y, et al. A simple method for fabricating drugs containing acis-o-diol structure into guanosine-based supramolecular hydrogels for drug delivery[J]. Biomaterials Science, 2023, 11 (9) : 3092-3103.
doi: 10.1039/D3BM00057E |
| [39] | Xie X Q, Zhang Y, Liang Y, et al. Programmable transient supramolecular chiral G‐quadruplex hydrogels by a chemically fueled non-equilibrium self‐assembly strategy[J]. Angewandte Chemie International Edition, 2022, 61 (9) : e202114471. |
| [40] |
Sousa V, Amaral A J R, Castanheira E J, et al. Self-supporting hyaluronic acid-functionalized G-quadruplex-based perfusable multicomponent hydrogels embedded in photo-cross-linkable matrices for bioapplications[J]. Biomacromolecules, 2023, 24 (7) : 3380-3396.
doi: 10.1021/acs.biomac.3c00433 |
| [41] | Hu X, Lei S, Song S, et al. Guanosine‐based hydrogel integrating photothermal effect of PDA‐AuNPs through dynamic borate bond for photothermal therapy of cancer[J]. Chemistry-An Asian Journal, 2022, 17 (15) : e202200302. |
| [42] | Li J, Cui Y, Lu Y L, et al. Programmable supramolecular chirality in non-equilibrium systems affording a multistate chiroptical switch[J]. Nature Communications, 2023, 14 (1) : 5030. |
| [43] | Bhattacharyya T, Kumar Y P, Dash J. Supramolecular hydrogel inspired from DNA structures mimics peroxidase activity[J]. ACS Biomaterials Science & Engineering Journal, 2017, 3 (10) : 2358-2365. |
| [44] |
Pieraccini S, Masiero S, Pandoli O, et al. Reversible interconversion between a supramolecular polymer and a discrete octameric species from a guanosine derivative by dynamic cation binding and release[J]. Organic Letters, 2006, 8 (14) : 3125-3128.
pmid: 16805568 |
| [45] |
Shi X, Fettinger J C, Davis J T. Ion-pair recognition by nucleoside self-assembly: guanosine hexadecamers bind cations and anions[J]. Angewandte Chemie International Edition, 2001, 40 (15), 2827-2831.
doi: 10.1002/(ISSN)1521-3773 |
| [46] |
Liu X, Kwan I M, Wang S, et al. G-quartet formation from an N2-modified guanosine derivative[J]. Organic Letters, 2006, 8 (17) : 3685-3688.
pmid: 16898792 |
| [47] |
Zhao H, Feng H, Liu J, et al. Dual-functional guanosine-based hydrogel integrating localized delivery and anticancer activities for cancer therapy[J]. Biomaterials, 2020, 230: 119598.
doi: 10.1016/j.biomaterials.2019.119598 |
| [48] |
Marlow A L, Mezzina E, Spada G P, et al. Cation-templated self-assembly of a lipophilic deoxyguanosine: Solution structure of a K+-dG8 octamer[J]. The Journal of Organic Chemistry, 1999, 64 (14) : 5116-5123.
doi: 10.1021/jo9901440 |
| [49] |
Kwan I C M, She Y, Wu G. Nuclear magnetic resonance and mass spectrometry studies of 2′, 3′, 5′-O-triacetylguanosine self-assembly in the presence of alkaline earth metal ions (Ca2+, Sr2+, Ba2+)[J]. Canadian Journal of Chemistry, 2011, 89 (7) : 835-844.
doi: 10.1139/v10-179 |
| [50] |
Wu G, Kwan I C M. Helical structure of disodium 5′-guanosine monophosphate self-assembly in neutral solution[J]. Journal of the American Chemical Society, 2009, 131 (9) : 3180-3182.
doi: 10.1021/ja809258y |
| [51] |
Panda M, Walmsley J A. Circular dichroism study of supramolecular assemblies of guanosine 5′-monophosphate[J]. The Journal of Physical Chemistry B, 2011, 115 (19) : 6377-6383.
doi: 10.1021/jp201630g |
| [52] |
Peters G M, Skala L P, Plank T N, et al. G4-quartet.M(+) borate hydrogels[J]. Journal of the American Chemical Society, 2015, 137 (17) : 5819-5827.
doi: 10.1021/jacs.5b02753 |
| [53] |
Wong A, Ida R, Spindler L, et al. Disodium guanosine 5'-monophosphate self-associates into nanoscale cylinders at pH 8: A combined diffusion NMR spectroscopy and dynamic light scattering study[J]. Journal of the American Chemical Society, 2005, 127 (19) : 6990-6998.
pmid: 15884942 |
| [54] |
Peters G M, Skala L P, Plank T N. A G4·K+ hydrogel stabilized by an anion[J]. Journal of the American Chemical Society, 2014, 136 (36) : 12596-12599.
doi: 10.1021/ja507506c |
| [55] |
Gu C, Peng Y, Li J, et al. Supramolecular G4 eutectogels of guanosine with solvent-induced chiral inversion and excellent electrochromic activity[J]. Angewandte Chemie International Edition, 2020, 59 (42) : 18768-18773.
doi: 10.1002/anie.v59.42 |
| [56] | Wu G, Wong A. Direct detection of the bound sodium ions in self-assembled 5′-GMP gels: a solid-state 23Na NMR approach[J]. Chemical Communications, 2001, 24: 2658-2659. |
| [57] |
Wong A, Wu G. Selective binding of monovalent cations to the stacking G-quartet structure formed by guanosine 5'-monophosphate: A solid-state NMR study[J]. Journal of the American Chemical Society, 2003, 125 (45) : 13895-13905.
pmid: 14599230 |
| [58] |
Wu G, Wong A, Gan Z, et al. Direct detection of potassium cations bound to G-quadruplex structures by solid-state 39K NMR at 19.6 T[J]. Journal of the American Chemical Society, 2003, 125 (24) : 7182-7183.
doi: 10.1021/ja0340634 |
| [59] |
Hu D, Ren J, Qu X. Metal-mediated fabrication of new functional G-quartet-based supramolecular nanostructure and potential application as controlled drug release system[J]. Chemical Science, 2011, 2 (7) : 1356-1361.
doi: 10.1039/c1sc00109d |
| [60] | Kwan I C M, She Y M, Wu G. Trivalent lanthanide metal ions promote formation of stacking G-quartets[J]. Chemical Communications, 2007, 41: 4286-4288. |
| [61] |
Li X, Huang Z, Li S, et al. A new approach to construct and modulate G-quadruplex by cationic surfactant[J]. Journal of Colloid and Interface Science, 2020, 578: 338-345.
doi: S0021-9797(20)30757-8 pmid: 32535416 |
| [62] |
Reddy G N M, Peters G M, Tatman B P, et al. Magic-angle spinning NMR spectroscopy provides insight into the impact of small molecule uptake by G-quartet hydrogels[J]. Materials Advances, 2020, 1 (7) : 2236-2247.
doi: 10.1039/D0MA00475H |
| [63] |
Yadav R, Patra B, Rai R, et al. Solid-state NMR spectroscopy for unraveling structure and dynamics in biomaterials[J]. Solid State Nuclear Magnetic Resonance, 2025, 140: 102045.
doi: 10.1016/j.ssnmr.2025.102045 |
| [64] |
Wang Z, Qian Y, Qi P, et al. Ionolamellar liquid crystal of G-quadruplex in a protic ionic liquid[J]. Journal of Colloid and Interface Science, 2025, 700: 138479.
doi: 10.1016/j.jcis.2025.138479 |
| [1] | 张婉萍, 孟德旭, 刘凯凯, 王平礼, 张倩洁, 李成亮. 基于离子配位的多巴胺改性透明质酸钠组装行为及乳化性能[J]. 日用化学工业(中英文), 2025, 55(8): 1006-1016. |
| [2] | 张娟, 刘平, 侯晓康, 高源, 吕其超, 杨子浩. 油藏条件下原油/石油磺酸盐体系的乳化相行为及其影响因素研究[J]. 日用化学工业(中英文), 2025, 55(8): 969-979. |
| [3] | 李凤钦, 耿涛, 周婧洁, 孙晋源, 张科, 王春雨. 对不同催化剂催化十二醇和1, 2-环氧丁烷反应的机理和性能研究[J]. 日用化学工业(中英文), 2025, 55(8): 998-1005. |
| [4] | 段鑫, 张雅楠, 高佳佳, 张婉萍, 张倩洁. 椰油酰甘氨酸类表面活性剂复配体系相行为研究[J]. 日用化学工业(中英文), 2025, 55(7): 861-870. |
| [5] | 张婉萍, 陈婕, 王珊珊, 顾洁, 吕智, 张倩洁. 卵磷脂体系形成液晶的相行为研究[J]. 日用化学工业(中英文), 2025, 55(5): 563-572. |
| [6] | 孔令灿,韩毅. 银纳米簇二维组装体合成、发光与抑菌性能[J]. 日用化学工业(中英文), 2025, 55(10): 1236-1244. |
| [7] | 赵淋淋, 焦宇恬, 赵莉, 王策, 徐宝财. 一种含偶氮苯的二肽表面活性剂的合成及自组装行为[J]. 日用化学工业(中英文), 2024, 54(5): 507-513. |
| [8] | 张婉萍, 林延忠, 张倩洁, 张冬梅, 蒋汶. Ca2+介导的月桂酰甲基牛磺酸钠相行为研究[J]. 日用化学工业(中英文), 2024, 54(1): 32-37. |
| [9] | 曹东霞, 周雷, 李家宏, 林长钦, 陈锦玲. 牙膏中可溶性/游离氟化物快速定量分析方法研究[J]. 日用化学工业(中英文), 2024, 54(1): 38-44. |
| [10] | 窦欣. 凝胶软物质体系的超分子结构多样性分析[J]. 日用化学工业, 2022, 52(9): 945-950. |
| [11] | 李俊,张兴芳,张成伟,徐娜. CTAC/NaSal表面活性剂棒状胶束自组装行为的介观布朗动力学模拟[J]. 日用化学工业, 2020, 50(4): 213-219. |
| [12] | 梁新宇,徐志远,赵贵钧. 一种利用核磁共振氢谱表征植物油在头发内渗透性的方法[J]. 日用化学工业, 2020, 50(4): 244-248. |
| [13] | 周媛,杨秀全,张军. 烷基糖苷磺基琥珀酸酯盐与烷基糖苷的复配性能和相行为[J]. 日用化学工业, 2020, 50(1): 20-25. |
| [14] | 孙娜,郑利强,孙继超. 弱相互作用调控表面活性剂自组装(IV)——在离子传导方面的应用[J]. 日用化学工业, 2019, 49(4): 214-219. |
| [15] | 于洋,郑利强,孙继超. 弱相互作用调控表面活性剂自组装(Ⅲ)——响应性表面活性剂[J]. 日用化学工业, 2019, 49(3): 141-149. |
|
