[1] Faul C F J.Ionic self-assembly for functional hierarchical nanostructured materials [J].Accounts of Chemical Research,2014,47:3428-3438. [2] Zhang Shuguang.Fabrication of novel biomaterials through molecular self-assembly [J].Nature Biotechnology,2003,21:1171-1178. [3] Ikkala O,Ten Brinke G.Hierarchical self-assembly in polymeric complexes:towards functional materials [J].Chemical Communications,2004,19:2131-2137. [4] Yin Haiqing,Zhou Zukang,Huang Jianbin,et al.Temperature-induced micelle to vesicle transition in the sodium dodecylsulfate/dodecyltriethylammonium bromide system [J].Angewandte Chemie International Edition,2003,42:2188-2191. [5] Lin Yiyang,Wang Andong,Qiao Yan,et al.Rationally designed helical nanofibers via multiple non-covalent interactions:fabrication and modulation [J].Soft Matter,2010,6(9):2031-2036. [6] Rubio J,Alfonso I,Burguete M I,et al.Interplay between hydrophilic and hydrophobic interactions in the self-assembly of a Gemini amphiphilic pseudopeptide:from nano-spheres to hydrogels [J].Chemical Communications,2012,48:2210-2212. [7] Wang Chao,Wang Zhiqiang,Zhang Xi.Superamphiphiles as building blocks for supramolecular engineering:towards functional materials and surfaces [J].Small,2011,7:1379-1383. [8] Kang Yuetong,Liu Kai,Zhang Xi.Supra-amphiphiles:a new bridge between colloidal science and supramolecular chemistry [J].Langmuir,2014,30:5989-6001. [9] Hu Qida,Tang Guping,Chu P K.Cyclodextrin-based host-guest supramolecular nanoparticles for delivery:from design to applications [J].Accounts of Chemical Research,2014,47:2017-2025. [10] Das A,Ghosh S.Supramolecular assemblies by charge-transfer interactions between donor and acceptor chromophores [J].Angewandte Chemie International Edition,2014,53:2038-2054. [11] Paramonov S E,Jun H W,Hartgerink J D.Self-assembly of peptide-amphiphile nanofibers:the roles of hydrogen bonding and amphiphilic packing [J].Journal of the American Chemical Society,2006,128:7291-7298. [12] Li Wen,Kim Y,Li Jingfang,et al.Dynamic self-assembly of coordination polymers in aqueous solution [J].Soft Matter,2014,10:5231-5242. [13] Liu Kai,Yao Yuxing,Kang Yuetong,et al.A supramolecular approach to fabricate highly emissive smart materials [J].Scientific Reports,2013,3:2372-2378. [14] Tang Yong,Zhou Lipeng,Li Jiaxi,et al.Giant nanotubes loaded with artificial peroxidase centers:self-assembly of supramolecular amphiphiles as a tool to functionalize nanotubes [J].Angewandte Chemie International Edition,2010,49:3920-3924. [15] Liu Jing,Morikawa M A,Kimizuka N.Conversion of molecular information by luminescent nanointerface self-assembled from amphiphilic Tb(Ⅲ) complexes [J].Journal of the American Chemical Society,2011,133:17370-17374. [16] Wang Andong,Shi Wenyue,Huang Jianbin,et al.Adaptive soft molecular self-assemblies [J].Soft Matter,2015,12:337-357. [17] Yu Guocan,Jie Kecheng,Huang Feihe.Supramolecular amphiphiles based on host-guest molecular recognition motifs [J].Chemical Reviews,2015,115:7240-7303. [18] Harada A,Kobayashi R,Takashima Y,et al.Macroscopic self-assembly through molecular recognition [J].Nature Chemistry,2011,3:34-37. [19] Harada A,Takashima Y,Nakahata M.Supramolecular polymeric materials via cyclodextrin-guest interactions [J].Accounts of Chemical Research,2014,47:2128-2140. [20] Zhang Xiaomei,Guo Kun,Li Luohao,et al.Multi-stimuli-responsive magnetic assemblies as tunable releasing carriers [J].Journal of Materials Chemistry B,2015,3:6026-6031. [21] Nakahata M,Takashima Y,Yamaguchi H,et al.Redox-responsive self-healing materials formed from host-guest polymers [J].Nature Communications,2011,2:487-502. [22] Zou Jiong,Tao Fenggang,Jiang Ming.Optical switching of self-assembly and disassembly of noncovalently connected amphiphiles [J].Langmuir,2007,23:12791-12794. [23] Muraoka T,Koh C Y,Cui H,et al.Light-triggered bioactivity in three dimensions [J].Angewandte Chemie International Edition,2009,48:5946-5949. [24] Eastoe J,Wyatt P,Sanchez D M,et al.Photo-stabilised microemulsions [J].Chemical Communications,2005,22:2785-2786. [25] Vesperinas A,Eastoe J,Wyatt P,et al.Photoinduced phase separation [J].Journal of the American Chemical Society,2006,128:1468-1469. [26] Yamaguchi H,Kobayashi Y,Kobayashi R,et al.Photoswitchable gel assembly based on molecular recognition [J].Nature Communications,2012,3:19596-19600. [27] Lee S,Oh S,Lee J,et al.Stimulus-responsive azobenzene supramolecules:fibers,gels,and hollow spheres [J].Langmuir,2013,29:5869-5877. [28] Wang Yapei,Ma Ning,Zhang Zhixiang,et al.Photocontrolled reversible supramolecular assemblies of an azobenzene-containing surfactant with α-cyclodextrin [J].Angewandte Chemie International Edition,2007,46:2823-2826. [29] Lin Yiyang,Cheng Xinhao,Qiao Yan,et al.Creation of photo-modulated multi-state and multi-scale molecular assemblies via binary-state molecular switch [J].Soft Matter,2010,6:902-908. [30] Harada A.Cyclodextrin-based molecular machines [J].Accounts of Chemical Research,2001,34:456-464. [31] Li Wen,Park I,Kang S K,et al.Smart hydrogels from laterally-grafted peptide assembly [J].Chemical Communications,2012,48:8796-8798. [32] Hosta R L,Zhang Yan,Teo B M,et al.Cholesterol:a biological compound as a building block in bionanotechnology [J].Nanoscale,2013,5:89-109. [33] Wang Cheng,Chen Qun,Sun Fei,et al.Multistimuli responsive organogels based on a new gelator featuring tetrathiafulvalene and azobenzene groups:reversible tuning of the gel-sol transition by redox reactions and light irradiation [J].Journal of the American Chemical Society,2010,132:3092-3096. [34] Li Jingguo,Jiang Hao,Hu Wenlong,et al.Morphology modulation in an azobenzene based supramolecular amphiphiles system [J].Journal of Photochemistry and Photobiology A:Chemistry,2012,245:28-32. [35] 宋冰蕾,赵剑曦.光敏季铵盐Gemini表面活性剂a4-6-m在气/液界面的吸附[J].物理化学学报,2009,25(10):2020-2025. |