China Surfactant Detergent & Cosmetics ›› 2023, Vol. 53 ›› Issue (1): 92-99.doi: 10.3969/j.issn.1001-1803.2023.01.013
• Reviews • Previous Articles Next Articles
Wang Chunyu1,Wang Huijuan1,*(),Fan Shiqiang2,Liu Yang2
Received:
2022-04-25
Revised:
2022-11-22
Online:
2023-01-22
Published:
2023-01-31
Contact:
*Tel.: +86-13403117268, E-mail: cyrusabc@163.com.
E-mail:cyrusabc@163.com
CLC Number:
Wang Chunyu, Wang Huijuan, Fan Shiqiang, Liu Yang. Research progress on functional application of lignin nanoparticles[J].China Surfactant Detergent & Cosmetics, 2023, 53(1): 92-99.
[1] |
Richter A P, Brown J S, Bharti B, et al. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core[J]. Nature Nanotechnology, 2015, 10 (9) : 817-823.
doi: 10.1038/nnano.2015.141 pmid: 26167765 |
[2] | Wang Huan, Yang Dongjie, Qian Yong, et al. Recent progress in the preparation and application of lignin-based functional materials[J]. Chemical Industry and Engineering Progress, 2019, 38 (1) : 441-455. |
[3] |
Kai D, Tan M J, Chee P L, et al. Towards lignin-based functional materials in a sustainable world[J]. Green Chemistry, 2016, 18 (5) : 1175-1200.
doi: 10.1039/C5GC02616D |
[4] |
Lievonen M, Valle-Delgado J J, Mattinen M-L, et al. A simple process for lignin nanoparticle preparation[J]. Green Chemistry, 2016, 18 (5) : 1416-1422.
doi: 10.1039/C5GC01436K |
[5] |
Chen K, Wang S, Qi Y, et al. State-of-the-art: applications and industrialization of lignin micro/nano particles[J]. ChemSusChem, 2021, 14 (5) : 1284-1294.
doi: 10.1002/cssc.202002441 pmid: 33403798 |
[6] |
Li H, Deng Y, Wu H, et al. Self-assembly of kraft lignin into nanospheres in dioxane-water mixture[J]. Holzforschung, 2016, 70 (8) : 725-731.
doi: 10.1515/hf-2015-0238 |
[7] |
Richter A P, Bharti B, Armstrong H B, et al. Synthesis and characterization of biodegradable lignin nanoparticles with tunable surface properties[J]. Langmuir, 2016, 32 (25) : 6468-6477.
doi: 10.1021/acs.langmuir.6b01088 pmid: 27268077 |
[8] | Cui Shaobo, Lu Zhongyuan, Liu Dechun, et al. Interfacial polymerization and its applications[J]. Chemical Industry and Engineering Progress, 2006, 25 (1) : 47-50. |
[9] | Yiamsawas D, Beckers S J, Lu H, et al. Morphology-controlled synthesis of lignin nanocarriers for drug delivery and carbon materials[J]. ACS Biomaterials Science & Engineering, 2017, 3 (10) : 2375-2383. |
[10] |
Nypelö T E, Carrillo C A, Rojas O J. Lignin supracolloids synthesized from (W/O) microemulsions: use in the interfacial stabilization of Pickering systems and organic carriers for silver metal[J]. Soft Matter, 2015, 11 (10) : 2046-2054.
doi: 10.1039/c4sm02851a pmid: 25629687 |
[11] | Chen N, Dempere L A, Tong Z. Synthesis of pH-responsive lignin-based nanocapsules for controlled release of hydrophobic molecules[J]. ACS Sustainable Chemistry & Engineering, 2016, 4 (10) : 5204-5211. |
[12] |
Henn A, Mattinen M L. Chemo-enzymatically prepared lignin nanoparticles for value-added applications[J]. World Journal of Microbiology and Biotechnology, 2019, 35 (8) : 1-9.
doi: 10.1007/s11274-018-2566-9 |
[13] | Chen Kai, Qi Yungeng, Guo Yanzhu, et al. Progress on preparation and application of small-scale lignin particles[J]. Chemical Industry and Engineering Progress, 2020, 39 (8) : 3157-3173. |
[14] |
Juikar S J, Vigneshwaran N. Extraction of nanolignin from coconut fibers by controlled microbial hydrolysis[J]. Industrial Crops and Products, 2017, 109: 420-425.
doi: 10.1016/j.indcrop.2017.08.067 |
[15] | Rangan A, Manchiganti M V, Thilaividankan R M, et al. Novel method for the preparation of lignin-rich nanoparticles from lignocellulosic fibers[J]. Industrial Crops & Products, 2017, 103: 152-160. |
[16] |
Mishra P K, Wimmer R. Aerosol assisted self-assembly as a route to synthesize solid and hollow spherical lignin colloids and its utilization in layer by layer deposition[J]. Ultrasonics Sonochemistry, 2017, 35: 45-50.
doi: S1350-4177(16)30312-1 pmid: 27614582 |
[17] |
Myint A A, Lee H W, Seo B, et al. One pot synthesis of environmentally friendly lignin nanoparticles with compressed liquid carbon dioxide as an antisolvent[J]. Green Chemistry, 2016, 18 (7) : 2129-2146.
doi: 10.1039/C5GC02398J |
[18] |
Qi L, Zhu M, Zu Y, et al. Comparative antioxidant activity of nanoscale lignin prepared by a supercritical antisolvent (SAS) process with non-nanoscale lignin[J]. Food Chemistry, 2012, 135 (1) : 63-67.
doi: 10.1016/j.foodchem.2012.04.070 |
[19] |
Tortora M, Cavalieri F, Mosesso P, et al. Ultrasound driven assembly of lignin into microcapsules for storage and delivery of hydrophobic molecules[J]. Biomacromolecules, 2014, 15 (5) : 1634-1643.
doi: 10.1021/bm500015j pmid: 24720505 |
[20] | Ago M, Huan S, Borghei M, et al. High-throughput synthesis of lignin particles (-30 nm to -2 μm) via aerosol flow reactor: size fractionation and utilization in pickering emulsions[J]. ACS Applied Materials & Interfaces, 2016, 8 (35) : 23302-23310. |
[21] |
Alqahtani M S, Alqahtani A, Al-Thabit A, et al. Novel lignin nanoparticles for oral drug delivery[J]. Journal of Materials Chemistry B, 2019, 7 (28) : 4461-4473.
doi: 10.1039/c9tb00594c |
[22] |
Lintinen K, Xiao Y, Ashok R B, et al. Closed cycle production of concentrated and dry redispersible colloidal lignin particles with a three solvent polarity exchange method[J]. Green Chemistry, 2018, 20 (4) : 843-850.
doi: 10.1039/C7GC03465B |
[23] |
Dai L, Li Y, Liu R, et al. Green mussel-inspired lignin magnetic nanoparticles with high adsorptive capacity and environmental friendliness for chromium (Ⅲ) removal[J]. International Journal of Biological Macromolecules, 2019, 132: 478-486.
doi: 10.1016/j.ijbiomac.2019.03.222 |
[24] | Rivière G N, Korpi A, Sipponen M H, et al. Agglomeration of viruses by cationic lignin particles for facilitated water purification[J]. ACS Sustainable Chemistry & Engineering, 2020, 8 (10) : 4167-4177. |
[25] |
Leskinen T, Witos J, Delgado J, et al. Adsorption of proteins on colloidal lignin particles for advanced biomaterials[J]. Biomacromolecules, 2017, 18 (9) : 2767-2776.
doi: 10.1021/acs.biomac.7b00676 pmid: 28724292 |
[26] |
Nishio M, Umezawa Y, Fantini J, et al. CH-π hydrogen bonds in biological macromolecules[J]. Physical Chemistry Chemical Physics, 2014, 16 (25) : 12648-12683.
doi: 10.1039/c4cp00099d pmid: 24836323 |
[27] |
Penna M J, Mijajlovic M, Biggs M J. Molecular-level understanding of protein adsorption at the interface between water and a strongly interacting uncharged solid surface[J]. Journal of the American Chemical Society, 2014, 136 (14) : 5323-5331.
doi: 10.1021/ja411796e pmid: 24506166 |
[28] |
Zong E, Huang G, Liu X, et al. A lignin-based nano-adsorbent for superfast and highly selective removal of phosphate[J]. Journal of Materials Chemistry A, 2018, 6 (21) : 9971-9983.
doi: 10.1039/C8TA01449C |
[29] |
Liu X, He X, Zhang J, et al. Cerium oxide nanoparticle functionalized lignin as a nano-biosorbent for efficient phosphate removal[J]. RSC Advances, 2020, 10 (3) : 1249-1260.
doi: 10.1039/c9ra09986g pmid: 35494677 |
[30] |
Sohni S, Hashima R, Nidaullah H, et al. Chitosan/nano-lignin based composite as a new sorbent for enhanced removal of dye pollution from aqueous solutions[J]. International journal of biological macromolecules, 2019, 132: 1304-1317.
doi: S0141-8130(19)30667-1 pmid: 30922916 |
[31] | Azimvand J, Didehban K, Mirshokraie S A. Preparation and characterization of nano-lignin biomaterial to remove basic red 2 dye from aqueous solutions[J]. Pollution, 2018, 4 (3) : 395-415. |
[32] |
Dong R J, Zheng D F, Yang D J, et al. pH-responsive lignin-based magnetic nanoparticles for recovery of cellulose[J]. Bioresource Technology, 2019, 294: 122133-122139.
doi: 10.1016/j.biortech.2019.122133 |
[33] | Chen Yihui, Liu Yan, Zhou Jianli, et al. Determination of peroxides in food samples by high performance liquid chromatography with variable wavelength detector[J]. Chinese Journal of Spectroscopy Laboratory, 2009, 26 (2) : 414-417. |
[34] |
Muralikrishna S, Cheunkar S, Lertanantawong B, et al. Graphene oxide-Cu(Ⅱ) composite electrode for non-enzymatic determination of hydrogen peroxide[J]. Journal of Electroanalytical Chemistry, 2016, 776: 59-65.
doi: 10.1016/j.jelechem.2016.06.034 |
[35] |
Sheng Y, Yang H, Wang Y, et al. Silver nanoclusters-catalyzed luminol chemiluminescence for hydrogen peroxide and uric acid detection[J]. Talanta, 2017, 166: 268-274.
doi: S0039-9140(17)30176-5 pmid: 28213233 |
[36] |
Nasir M, Nawaz M H, Latif U, et al. An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays[J]. Microchimica Acta, 2017, 184 (2) : 323-342.
doi: 10.1007/s00604-016-2036-8 |
[37] |
Aadil K R, Barapatre A, Meena A S, et al. Hydrogen peroxide sensing and cytotoxicity activity of Acacia lignin stabilized silver nanoparticles[J]. International Journal of Biological Macromolecules, 2016, 82: 39-47.
doi: 10.1016/j.ijbiomac.2015.09.072 pmid: 26434518 |
[38] |
Wang B, Gu S, Ding Y, et al. A novel route to prepare LaNiO3 perovskite-type oxide nanofibers by electrospinning for glucose and hydrogen peroxide sensing[J]. Analyst, 2013, 138 (1) : 362-367.
doi: 10.1039/C2AN35989H |
[39] |
Zhang Q, Li M, Guo C, et al. Fe3O4nanoparticles loaded on lignin nanoparticles applied as a peroxidase mimic for the sensitively colorimetric detection of H2O2[J]. Nanomaterials, 2019, 9 (2) : 210-224.
doi: 10.3390/nano9020210 |
[40] |
Jiang B, Duan D, Gao L, et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes[J]. Nature Protocols, 2018, 13 (7) : 1506-1520.
doi: 10.1038/s41596-018-0001-1 pmid: 29967547 |
[41] | Xue Y, Qiu X, Liu Z, et al. Facile and efficient synthesis of silver nanoparticles based on biorefinery wood lignin and its application as the optical sensor[J]. ACS Sustainable Chemistry & Engineering, 2018, 6 (6) : 7695-7703. |
[42] |
Feldman D. Lignin nanocomposites[J]. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2016, 53 (6) : 382-387.
doi: 10.1080/10601325.2016.1166006 |
[43] |
Grossman A, Wilfred V. Lignin-based polymers and nanomaterials[J]. Current Opinion in Biotechnology, 2019, 56: 112-120.
doi: S0958-1669(18)30061-2 pmid: 30458357 |
[44] | Du Lulu, Meng Weixiao, Xie Yanlin, et al. Research progress on PLA toughening[J]. New Chemical Materials, 2021, 49 (2) : 48-51. |
[45] | Yang W, Dominici F, Fortunati E, et al. Effect of lignin nanoparticles and masterbatch procedures on the final properties of glycidyl methacrylate-g-poly(lactic acid) films before and after accelerated UV weathering[J]. Industrial Crops & Products, 2015, 77: 833-844. |
[46] |
Yang W, Fortunati E, Dominici F, et al. Effect of processing conditions and lignin content on thermal, mechanical and degradative behavior of lignin nanoparticles/polylactic(acid) bionanocomposites prepared by melt extrusion and solvent casting[J]. European Polymer Journal, 2015, 71: 126-139.
doi: 10.1016/j.eurpolymj.2015.07.051 |
[47] |
Li X, Hegyesi N, Zhang Y, et al. Poly(lactic acid)/lignin blends prepared with the pickering emulsion template method[J]. European Polymer Journal, 2019, 110: 378-384.
doi: 10.1016/j.eurpolymj.2018.12.001 |
[48] |
Gordobil O, Delucis R, Egüés I, et al. Kraft lignin as filler in PLA to improve ductility and thermal properties[J]. Industrial Crops and Products, 2015, 72: 46-53.
doi: 10.1016/j.indcrop.2015.01.055 |
[49] |
Anwer M, Naguib H, Celzard A, et al. Comparison of the thermal, dynamic mechanical and morphological properties of PLA-lignin & PLA-tannin particulate green composites[J]. Composites Part B, 2015, 82: 92-99.
doi: 10.1016/j.compositesb.2015.08.028 |
[50] |
Bertini F, Canetti M, Cacciamani A, et al. Effect of ligno-derivatives on thermal properties and degradation behavior of poly(3-hydroxybutyrate)-based biocomposites[J]. Polymer Degradation and Stability, 2012, 97: 1979-1987.
doi: 10.1016/j.polymdegradstab.2012.03.009 |
[51] |
Liu D, Zhong T, Chang P R, et al. Starch composites reinforced by bamboo cellulosic crystals[J]. Bioresource Technology, 2010, 101 (7) : 2529-2536.
doi: 10.1016/j.biortech.2009.11.058 pmid: 20015636 |
[52] |
Lizundia E, Armentano I, Luzi F, et al. Synergic effect of nanolignin and metal oxide nanoparticles into poly(L-lactide) bionanocomposites: material properties, antioxidant activity and antibacterial performance[J]. ACS Applied Bio Materials, 2020, 3 (8) : 5263-5274.
doi: 10.1021/acsabm.0c00637 pmid: 35021701 |
[53] |
Nguyen K T, West J L. Photopolymerizable hydrogels for tissue engineering applications[J]. Biomaterials, 2002, 23 (22) : 4307-4314.
pmid: 12219820 |
[54] |
Chen Y, Zheng K, Niu L, et al. Highly mechanical properties nanocomposite hydrogels with biorenewable lignin nanoparticles[J]. International Journal of Biological Macromolecules, 2019, 128: 414-420.
doi: S0141-8130(18)35437-0 pmid: 30682469 |
[55] |
Yang W, Fortunati E, Bertoglio F, et al. Polyvinyl alcohol/chitosan hydrogels with enhanced antioxidant and antibacterial properties induced by lignin nanoparticles[J]. Carbohydrate Polymers, 2018, 181: 275-284.
doi: S0144-8617(17)31240-7 pmid: 29253973 |
[56] |
Hu X, Ye D, Tang J, et al. From waste to functional additives: thermal stabilization and toughening of PVA with lignin[J]. RSC Advances, 2016, 6 (17) : 13797-13802.
doi: 10.1039/C5RA26385A |
[57] |
Ye D, Jiang L, Hu X, et al. Lignosulfonate as reinforcement in polyvinyl alcohol film: mechanical properties and interaction analysis[J]. International journal of biological macromolecules, 2016, 83: 209-215.
doi: 10.1016/j.ijbiomac.2015.11.064 pmid: 26631636 |
[58] |
Bian H, Jiao L, Wang R, et al. Lignin nanoparticles as nano-spacers for tuning the viscoelasticity of cellulose nanofibril reinforced polyvinyl alcohol-borax hydrogel[J]. European Polymer Journal, 2018, 107: 267-274.
doi: 10.1016/j.eurpolymj.2018.08.028 |
[1] | Shida Hou, Zhifei Wang, Yakui Wang, Jun Li, Yajie Jiang, Tao Geng. Application properties of the mixed system of AEC and a quaternary ammonium salt with multiple cationic sites [J]. China Surfactant Detergent & Cosmetics, 2024, 54(2): 131-138. |
[2] | Kuankuan Gao, Suzhen Yang, Tingting Han, Yan Li, Chunying Yuan, Xinyu Mao. Research progress of royal jelly acid and its skin care efficacy [J]. China Surfactant Detergent & Cosmetics, 2024, 54(2): 209-215. |
[3] | Pei Liu, Ting Pan, Xiaomei Pei, Binglei Song, Jianzhong Jiang, Zhenggang Cui, Bernard P. Binks. Dual-responsive oil-in-water emulsions co-stabilized by a nonionic-anionic Bola surfactant and silica nanoparticles [J]. China Surfactant Detergent & Cosmetics, 2024, 54(1): 1-15. |
[4] | Sun Jinyue, He Congfen. Research status of network pharmacology and its application prospect in the field of cosmetics [J]. China Surfactant Detergent & Cosmetics, 2023, 53(9): 1087-1093. |
[5] | Xiong Jie, Yang Dan, Meng Hong, He Yifan, Pei Xiaojing. Research progress in skin physiological effects and its cosmetic encapsulation technology of ferulic acid [J]. China Surfactant Detergent & Cosmetics, 2023, 53(9): 1073-1079. |
[6] | Wang Zhuliang,Guan Shuping,Zhang Min,Yang Jie,Li Yongji. The size and morphology control of Fe3O4 nanoparticles synthesized by solvothermal method using polyethylene glycol and diethylene glycol [J]. China Surfactant Detergent & Cosmetics, 2023, 53(8): 882-890. |
[7] | Wang Min, Li Mengyue, Li Xiaoyi, Liu Qi, Zhao Hua, Zhao Fengnian. On-site and rapid electrochemical method for chloramphenicol detection in facial masks [J]. China Surfactant Detergent & Cosmetics, 2023, 53(7): 802-807. |
[8] | Zhang Wanping, Gai Houchen, Zhang Dongmei, Jiang Wen, Zhu Guangyong. Research progress of cyclodextrin encapsulation technology and its application on cosmetic ingredients [J]. China Surfactant Detergent & Cosmetics, 2023, 53(7): 808-815. |
[9] | Zhu Hairong, Sun Shengmin, Zhang Juan, Liu Shuang, Liu Qianqian, Zou Huiling. Recent progress on the application status of cosmetic preservatives and their detection technology [J]. China Surfactant Detergent & Cosmetics, 2023, 53(6): 679-685. |
[10] | Meng Xianyao, Cheng Yidan, Guo Miaomiao, Ling Xiao, Yu Dan, Li Li. Research and application of Tibetan characteristic plant resources in cosmetics [J]. China Surfactant Detergent & Cosmetics, 2023, 53(6): 698-705. |
[11] | Qi Guofeng, Li Ganggang, An Yan. Study on the preparation of Astragalus by enzymatic hydrolysis and its application [J]. China Surfactant Detergent & Cosmetics, 2023, 53(5): 544-550. |
[12] | Li Xi, Aidarova Saule, Yin Xia, Issakhov Miras, Xu Derong, Kang Wanli. Research progress of fluorescent nanomaterials [J]. China Surfactant Detergent & Cosmetics, 2023, 53(5): 551-559. |
[13] | Wang Xiaokang, Chen Wen, Zhang Taijun, Yin Zhigang, Gu Yulong, Li Tao. Research and application prospect of phytosterols (esters) [J]. China Surfactant Detergent & Cosmetics, 2023, 53(4): 445-452. |
[14] | Xiaoman Sun, Xianyao Meng, Wen Zhou, Miaomiao Guo, Xiao Ling, Li Li. Research and application of Yunnan characteristic plant resources in cosmetics [J]. China Surfactant Detergent & Cosmetics, 2023, 53(12): 1459-1465. |
[15] | Zhang Qianjie, Shan Ziyue, Zhang Dongmei, Jiang Wen, Zhang Wanping. Research progress of stimuli-responsive polymer emulsifiers [J]. China Surfactant Detergent & Cosmetics, 2023, 53(11): 1305-1314. |
|