[1] |
Kanazawa R, A Sasaki, H Tokuyama. Preparation of dual temperature/pH-sensitive polyampholyte gels and investigation of their protein adsorption behaviors[J]. Separation and Purification Technology, 2012, 96:26-32.
doi: 10.1016/j.seppur.2012.05.016
|
[2] |
Xiong W. Dual temperature/pH-sensitive drug delivery of poly(N-isopropylacrylamide-co-acrylic acid) nanogels conjugated with doxorubicin for potential application in tumor hyperthermia therapy[J]. Colloids Surf B Biointerfaces, 2011, 84(2): 447-453.
doi: 10.1016/j.colsurfb.2011.01.040
|
[3] |
Luo C H. Utilization of L-serinyl derivate to preparing triple stimuli-responsive hydrogels for controlled drug delivery[J]. Journal of Polymer Research, 2019, 26(12).
|
[4] |
Pilipenko I M. Thermo- and pH-sensitive glycosaminoglycans derivatives obtained by controlled grafting of poly(N-isopropylacrylamide)[J]. Carbohydrate Polymers, 2020, 248(9): 116764.
doi: 10.1016/j.carbpol.2020.116764
|
[5] |
Pavan Rudhrabatla V S A. Fabrication and characterisation of curcumin loaded pH dependent sodium alginate-g-poly(acryloyl phenylalanine)-cl-ethylene glycol vinyl ether-co- hydroxyethyl acrylate hydrogels and their in-vitro, in-vivo and toxicological evaluation studies[J]. Journal of Drug Delivery Science and Technology, 2019, 51:438-453.
doi: 10.1016/j.jddst.2019.03.020
|
[6] |
Such G K. Interfacing materials science and biology for drug carrier design[J]. Adv Mater, 2015, 27(14): 2278-2297.
doi: 10.1002/adma.v27.14
|
[7] |
Wu M. Injectable and self-healing nanocomposite hydrogels with ultrasensitive pH-responsiveness and tunable mechanical properties: implications for controlled drug delivery[J]. Biomacromolecules, 2020, 21(6): 2409-2420.
doi: 10.1021/acs.biomac.0c00347
|
[8] |
Dehghan-Baniani D. Injectable in situ forming kartogenin-loaded chitosan hydrogel with tunable rheological properties for cartilage tissue engineering[J]. Colloids Surf B Biointerfaces, 2020, 192:111059.
doi: 10.1016/j.colsurfb.2020.111059
|
[9] |
Bordat A. Thermoresponsive polymer nanocarriers for biomedical applications[J]. Advanced Drug Delivery Reviews, 2019, 138:167-192.
doi: 10.1016/j.addr.2018.10.005
|
[10] |
Li X. Redox/temperature responsive nonionic nanogel and photonic crystal hydrogel: Comparison between N, N′-Bis(acryloyl)cystamine and N, N′-methylenebisacrylamide[J]. Polymer, 2018, 137:112-121.
doi: 10.1016/j.polymer.2017.12.066
|
[11] |
Radecki M. Temperature-induced phase transition in hydrogels of interpenetrating networks of poly(N-isopropylacrylamide) and polyacrylamide[J]. European Polymer Journal, 2015, 68:68-79.
doi: 10.1016/j.eurpolymj.2015.04.019
|
[12] |
Sun S T. Chain collapse and revival thermodynamics of poly(n-isopropylacrylamide) hydrogel[J]. Journal of Physical Chemistry B, 2010, 114(30): 9761-9770.
doi: 10.1021/jp103818c
|
[13] |
Huynh C T. pH/temperature-sensitive 4-arm poly(ethylene glycol)-poly(amino urethane) copolymer hydrogels[J]. Polymer, 2010, 51(17): 3843-3850.
doi: 10.1016/j.polymer.2010.06.042
|
[14] |
G Fundueanu, M Constantin, P Ascenzi. Preparation and characterization of pH- and temperature-sensitive pullulan microspheres for controlled release of drugs[J]. Biomaterials, 2008, 29(18): 2767-2775.
doi: 10.1016/j.biomaterials.2008.03.025
pmid: 18396330
|